i ///// / /’/, } |
,// /// //,’f’/‘“‘““‘s“‘
o/ // /] /‘/] |
/ ////// / / / “e ‘J ‘\ ‘ \
’/ [\
T
m

I

i ’JH‘H\\\

//// 111
/ |
/yl/,//

/
/

—
=
- The Madboks Project

- A booking and event management platform for a non-profit
organisation fighting against food waste

. ’ Bence Szabo, Lojain Ajek,
— Louise Foldey Steffens, Sara Selman & Sofia Gran

Software, Group 1
2024-December

Semester Project, P7

AALBORG UNIVERSITY
STUDENT REPORT

Title:

The Madboks Project - A booking and event man-
agement platform for a non-profit organisation fighting
against food waste

Theme:
Internet and sustainability

Project Period:
The Fall semester of 2024

Project Group:
Group 1

Participant(s):

Bence Szabo

Lojain Ajek

Louise Foldey Steffens
Sara Selman

Sofia Gran

Supervisor(s):
Tung Kieu

Copies: 1
Page Numbers:

Date of Completion:
December 19, 2024

Software
Aalborg University
http://www.aau.dk

Abstract:

This project documents a collaboration with
the non-profit organisation Madboks, whose
mission centers on sustainability through
the reduction of retailer-level food waste.
The project focuses on developing a unified
web application to enhance and streamline
Madboks’ daily operations to support this
mission. This paper explores the strategies
employed to improve operational efficiency,
the methodologies used to map out and
understand the current system, the techni-
cal and architectural decisions guiding the
application’s development, scalability and
deployment pipeline, and the user experi-
ence (UX) design principles that informed
its creation. Additionally, it evaluates the fi-
nal product’s quality through feedback from
both administrators and users, assessing its
effectiveness in advancing Madboks’ mis-
sion and goals.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

author.

http://www.aau.dk

Preface

This report documents the work on the 1st-semester project at the Software Masters of Science
Program at Aalborg University in Copenhagen. The theme of the semester project is 'Internet’
and the purpose of the project module is to contribute to the students gaining knowledge
about and being able to develop an Internet application or service. In addition, the semester
project should, in some way, involve one or more of the United Nation’s sustainable devel-
opment goals (SDGs). The project presented in this report worked on creating a website for
the non-profit volunteer organisation Madboks, which is dedicated to reducing food waste
through efficient food redistribution. This contributes to the SDG nr. 12, "Ensure sustainable
consumption and production patterns”.

Gratitude is extended to the supervisor, Tung Kieu, for providing invaluable professional
knowledge, guidance, and constructive feedback throughout the development and writing
process. Also, a heartfelt thank you to Roxana Zlate, the founder of Madboks and the product
owner of this project. The authors of this rapport are grateful for collaborating with an organi-
sation that makes a real-life impact and actively contributes to a more sustainable community.

Table of Contents

|3 Ana1251s|

B.1 System Definition]
3.2 Richpicture|
.....................................
[3.4 Problem Domain Analysis|. L.

4.1 1 Events|

1 Design
.

BT Requirements|

BI1I MoSCoWl e
4.2 Database diagram|. L o
4.3 System Architecture| oL

4.3.1 N-Layers and N-Tiers Architecture|.
4.4 Navigation| L
441 Guest Navigation|.
4472 Customer Navigafion]
443 Admin Navigation| oo o
S Uldesignl. . . o o o0

(O BN RN

451 Ulmock-up| 33
452 Summary| 34

[> Implementation| 35
Bb.I TechnologyStack] 35
b.I1 Development environment| 35
b.12 Application Technology| 36
BI21 Databasel 37

.1.3 Ensuring security with Cloudflare Turnstile Captcha) 37

14 DevOpsand CI/CD| 37
b.141 DevelopmentTifecycle]. 37

b.142 Frontend pipelines|. 38

b.143 Backend pipelines| 39

p.-1.5 Hostingonserver|. 41
....................................... 41

P2 Application of Agile Principles| 41
B3 Sprintd]. 43
p.31 SprintPlanning| 43
B.32 TFrontenditems| 43
b.3.3 Backenditems|. L L 44
5.3.3.1 S1B1, S1B2, S1B3: CRUD for events, locations and reservation| . 44

P34 SprintReview|. L oo oo 46

BA Sprint2]. 46
p.41 SprintPlanning| 46

itemsl 47

p4.2.1 S2F1: Homepage (second iteration)| 47

p.42.2" S2F3: Email service frontend and corresponding forms 48

b.42.3 S2F5: Login and signup UI connected with Supabase auth| . . . 49

[5.42.4 S2F6: Connect upcoming events, your events and reservation |

[with backend/databasel. oo 0L 49
543 Backenditemsl. 51
4.4 52B2: Email service backend and email templates| 51
FA45 SprintReview]. 52

B5 Sprint3]. 53
b.51 SprintPlanning] 53
552 Frontenditems 53
[.5.3 S3F1: Mobile Compatibility| 53

: el ..o 53

[5.5.5 S3F4: Admin dashboard makeover, timeslot fix, and edit active and up- |

| comingevents| L 54
[5.5.6 S3F5: "Event’ page updates - Ul fix and pop-up to edit/cancel booked |

L events.) 56
b.5.7 S3F6: Reservation with timeslots|0 .. 57
[5.5.8 S3F7: Location page foradmin| 58

559 Backenditemsl|. Lo 59

[0.5.10 S3BI1: Cloudtlare Turnstile Captcha] 59

b.5.11 S3B3: Setup of pre-production server] 59
[5.5.12S3B4: Timeslots/Locations/Events/Reservations makeover] 60

[5.5.13 S3B5: Email updates (send multiple emails at once, add personal infor- |

mation to formatting using Handlebars)| 64

b.5.14 S3B6: Docker Setup| 66

F515 SprintReview] 66

F5151 User acceptancetesf|. 66

B.6 Sprintd]. 68
b.61 SprintPlanning]. 68

items| 68

[.6.3 54F3: More mobile compatibility] o 000 68

b.64 S4F4 Emailupdates| 70

F.65 SprintReview|. 70

|6 Quality Assurance| 71
6.1 Unittestsl. 71
6.2 User lests| 71
[6.2.0.1 Product owner and admin tests| 72

[6.2.0.2 Volunteer/customer tests|. 73

|7 Overview of the final product| 75
8 Discussion] 81
81 DProcessl 81
[3.1.1 Reflections on the development process|. 81

8.2 The product owner’s reflections on the development process| 82

8.3 How QA could have been improved| 82
3.1 TIntegrationtesting] 83

B32Z Toadtestd 83

B.3.3 Unit tests on the frontend sidel 83

[8.3.4 Static code analysis (CodeScene) 84

B4 Futureworkl 84
BAT Securify| 85

8.4.2 Expanded User Testing| 86

8.5 Scalability] 87
[B.6 Sustainability] 87
©Conclusionl 89
[A_Screenshots 91
B Pipelines 93
BI CIpipelineweb| 93

.2 CI/CD pipeline web -preprod|. 95

3 Clpipelinebackend| 98

4 CI/CDpipelinebackend|. 99

|C Transcription| 102
[C1 FirstMeeting|. 102
105
E_Navigation 107
[F_Product owner final evaluation| 109
IG_User Stories| 110
H_ Sprints 111
.0.0.1 SIF1: Homepage (first iteration). 111

H.0.0.2 S1F2: Navigation bar (hardcoded first iteration)] 112

H.0.0.3 SIF3: Upcoming events component (mock data)] 112

.0.04 S1F4: Your events component (mock data)[. 113

[HL0.0.5 _STF5 Location creation] . - - - - v v v v v e e e 114

|H.0.0.6 S1F6: Event creation (first iteration| 114

.0.0.7 SIF7: Reservationpagel 114

H.0.0.8 S2F2: Volunteer page| 116

H.0.0.9 S2F7: Event popup, showing information and description of the |

L eventl. 117
[H.0.0.10 S2F4: Admin dashboard - display events/locations and edit lo- |

| cation functionality] oo oL 117
0.1 S2F8: Connect navigation bar withauthl. 117

H.0.2 S2B1: Setting up the server and hosting + pipelines|. 117

H.0.3 S2B2: Email service backend|, 118

0.4 S3F3: Aboutuspage| L o 118

HOE S3FA . . . oo 119

HO06 S3BA 120

HO061 S3B4-T]. 120

H.0.62 S3B4-21. 121

H.063 S3B4-3. 121

HO64A S3BAA 122

065 S3B4-5. 124

H.06.6 S3B4-6l. 125

0.7 S4F1: User test fixes and small text and layout updates|. 126

H.0.8 S4F2: Configuration fix to not expose source code in the browser] 126

[l Design Criteria for the Madboks Platform| 127
Bibliography 129

Chapter 1

Introduction and motivation

Food waste is a pressing global issue with significant environmental, economic, and social
consequences. Denmark, despite being a leader in sustainability initiatives, discards approx-
imately 700,000 tonnes of food annually, with a substantial portion still fit for consumption
[13]. This issue extends beyond resource inefficiency, directly impacting food insecurity — a
pressing challenge for vulnerable populations that could be alleviated through improved food
redistribution systems.

A staggering 36% of total waste in the Capital Region of Denmark is residual waste, half
of which is food waste. Residual waste refers to waste materials that remain after all reusable,
recyclable, or compostable components have been separated or processed. This amounts to
226,000 tonnes of wasted food annually, with 60% being preventable at the retail and house-
hold levels [5]. Such waste not only represents a loss of economic and functional value but
also exacerbates food insecurity. Schneider highlights in their paper "The evolution of food do-
nation with respect to waste prevention”, the potential of food donations as a form of "urban
mining," where edible food is redirected for human consumption instead of being wasted.
However, achieving this requires overcoming logistical, social, and regulatory barriers with
region-specific solutions [16].

Schneider further emphasizes that food donation can serve as a crucial strategy for waste
prevention, highlighting the need for effective systems to facilitate this process.

"The donation of food which is still edible can be seen as a specific application of urban mining as
food is recovered for its original purpose - human intake” [16]

Food waste impacts various stakeholders, including food producers, retailers, and consumers.
It also disproportionately affects low-income families and individuals facing food insecurity.
Effective food donation systems can bridge this gap, but current efforts often lack scalability
and operational efficiency, leaving much of the potential untapped [17].

Madboks aims to address this issue by connecting surplus food from retailers to those in
need. As a non-profit organisation without a dedicated tech team, Madboks only operates
with the help of free and publicly available software solutions. This project focuses on sup-
porting Madboks by recognising their digital shortcomings and providing a suitable solution
to amplify their impact, and contribute to global sustainability efforts, particularly the United
Nations’ Sustainable Development Goals (SDGs):

* SDG 2: Zero Hunger
e SDG 11: Sustainable Cities and Communities
e SDG 12.3: Global Food Loss and Waste

Madboks already has an engaged community, with 10,000 followers on Facebook and 3,000
on Instagram, alongside a peak user interest when food donation forms are shared. Madboks
have a solid customer base with several hundreds of donors and customers attending their
events every week. Given the sheer size of Madboks’ operations, the importance of scalability
both in terms of the number of users and features is worth emphasising

This project aims to enhance Madboks’ food donation efficiency by strengthening their digi-
tal presence and aligning their operations with Copenhagen’s vision for a circular economy [5].

Disclaimer: The authors utilised ChatGPT, Perplexity Al and GitHub Copilot to assist in the writ-
ing of the report and accompanying source code.

Chapter 2

State of the Art

This chapter examines state-of-the-art solutions available on the market, aiming to uncover
design principles and ideas that can inspire improvements to Madboks” existing solution. By
highlighting key strengths and best practices, it lays the groundwork for enhancing the Mad-
boks booking system from a design perspective.

The research focuses on solutions that address food waste reduction and other state-of-the-
art systems with features relevant to event creation and display.

2.1 Too Good To Go

One of the most prominent and widely used solutions in Denmark and internationally for
redistributing otherwise discarded food is the Too Good To Go mobile app. The app allows
users to purchase surplus food at reduced prices from local restaurants, cafés, supermarkets,
and bakeries.

This platform provides valuable insights into how technology can support organisations fo-
cused on reducing food waste. Too Good To Go’s primary goal is to prevent surplus food
from being discarded by offering it to users. Key features of the app include a real-time sur-
plus food listing, where businesses post "goodie bags" available for pickup within a specific
time window. The app also features a user-friendly interface, enabling users to easily locate
and purchase surplus food from nearby locations. The main screens of the app are shown in

figure

[100] 56 # 3 i \ g [1013] i 56 WD

4 Nerrebro, Kebenhavn v € Din bestilling
denfor 10 km
Seg | e---,‘-b
Espresso House - Espresso House - Torvehallerne
Frederiksbor e 24, 1360 Kebenhavn, Danmark
Anbefalinger til dig Torvehallerne reericboragee o Banme
Find butikken her ()
== gk & & Lykkeposen 120,004
Bddenhoffs Bageris 0 4.4(276) 39,00 kr.
Borups Allé ® Afhentning: 20.00 - 20,30 jog hantar selv ,.,,‘ [w”‘
Bred Bagveerk waca-h Frederiksborggade 24, 1360
Afhentidag 20.15 - 20.30 Afhentid @
Kebenhavn, Danmark > DATO AFHENTNINGSTIDSPUNKT
43 14k 3 38 . ’
14km 49,00 kr. (+] iere aplysninger om butikken 7. dac. 2024 20.00- 20.30
Hvad s& nu?
Hvad kan du fA? KKEPOSE PRIS I A
Red, inden det er for sent Sealle > Det er en overraskelse - din
Red en lykkepose med Espresse House's lakre 1x Lykkeposen 39,00kr.

Lykkepose vil blive fyldt med

aD = i, s-m udvalg af overskydende mad. | posen kan der fx
'ag vaere sandwich, bagvaerk, salater, kage og

a ¥ f
' Jagtvejeis BlomstER @ yoghurti...
- Kebenhavn FE—

Blomster & Planter Bruncht

lackre varer, som er i overskud
ved lukketid.

MBALLAGE

Butikken serger for emballage til din mad,
men medbring gerne din egen pose til at
tage den med hjem .

Hold godt aje med tiden! Du
® skal nemlig afhente din
Lykkeposa | tidsrummet

Afhent i dag 15.00 - 17.00 Afhentid: Ingredienser & allergener > angivet nedenfor.
25 asm 39,00 kr. 0as Afhent om 09:46:07
Se Fedevarestyrelsens kontrolrapporter @
Modtag en pmindelse [1
Ny i appen Sealle > DET MENER ANDRE 2y Dinbestilling 5
Afhentning starter | dag kl. 20.00
TSR - mamien

o i} L vi) -] [} @ V] @ ®
Udforsk S Levering avoritter Profi Reservér Udforsk Seg Levering avoritter profi Erug for hjmip? Annuller

Figure 2.1: Screens from the Too Good To Go booking process: 1. The explore page. 2. An event’s details page. 3. A
confirmation page. 4. The reservations page.

The app offers valuable inspiration for Madboks in designing a platform for booking food
boxes on mobile devices. Some design elements that could be incorporated into the new
Madboks platform includes the following:

* Explore page: Displays events as cards with essential information and swipe functional-
ity for more options (see Screen 1 in Figure [2.1).

* Reservation page: Pops up upon selecting an event, showing detailed information and a
booking option (see Screen 2 in Figure 2.7).

¢ User reservations: Allows users to view their booked events and cancel them if necessary
(see Screen 4 in Figure 2.)).

2.2 Facebook Events

Facebook is the world’s leading social media platform and a primary communication channel
for countless organisations and initiatives. With features like Marketplace, Events, Dating,
and Groups, it offers diverse functionalities. Given that Madboks aims to deliver its highly
event-driven services to both desktop and mobile users, Facebook serves as a valuable source
of design inspiration.

Madboks’ existing solution partially relies on Facebook for its operations. Since users are

already accustomed to Facebook’s interface, examining how its relevant components are de-
signed provides crucial insights.

Adopting familiar design elements and components for similar purposes helps reduce the
learning curve and makes the platform feel more intuitive for users.

The Facebook Events page (see Figure provides an example of how to display both at-
tended and upcoming events. For Madboks, a similar approach could be adopted: showing
booked events vertically with detailed information and options, while upcoming events could
be displayed horizontally with less information.

ﬁ Q Search Facebook @

Events

0]
&0
®

o s

Your events See All
Q Search events

@ v

& YYour events v

Tomorrow at 11:00
Flere Fugle & Friends Julemarked
M Demokrati Garage

W Interested v A Share
@R Hermine and Hermine Franciska are interested

Sun, 29 Dec at 18:00

julebord <3

Ole Irgens' vei 16, 5019 Bergen, Norge
4 7 going - 1 maybe - 1 can't go

& Notifications

=+ Create New Event

Categories

X Invite

&% Tues, 31 Dec at 20:30
Nyttarsfest
Starefossveien 19, 5019 Bergen, Norge

@ Going v

! Classics

@ Hermine and 11 friends are going

® Comedy

Crafts
Discover events

©Q My location v B Any date v Top Friends Following
Drinks

oA
&g Dance
Y

&Y Fitness & workouts

{1 Foods

Figure 2.2: Facebook’s Events page

Facebook Marketplace provides a useful example of how this could be implemented. The
listing creation page (see Figure allows users to input listing details on the left while
previewing the final output on the right. This approach could simplify event creation for
Madboks administrators, offering ease of use and an intuitive layout.

00 # o @

Marketplace Preview

Listing details

L - Hammer
7 X 100 kr.
\ @ Listed a few seconds ago in Kebenhavn V
Add photo
v Details
Photos - 1/10 - You can add up to 10 photos. Condition Used - like new
Title this is a super cool hammer, but i do not need it
Hammer anymore. it is 35 cm long
Include key details such as brand, size, category and
colour. en
Price
100 kr.
Category \ Kebenhavn vV
Tools v N Location is approximate

Condition AR s))
. 3 N eller information
Used - like new v >

r/a Profile not shown

Description
this is a super cool hammer, but i do not
need it anymore. it is 35 cm long

Figure 2.3: Facebook’s create listing page

Learn more about purchasing from consumers,
including your limited consumer rights and
Facebook's role as an intermediary.

2.3 Summary

The hands-on examination of Too Good To Go and Facebook uncovered specific design and
feature ideas that could enhance the new Madboks platform. From Figure the Too Good
To Go app offers inspiration for mobile designs, such as the explore page (Screen 1), event
reservation page (Screen 2), and reservation management page (Screen 4). These features em-
phasise clean design and easy navigation.

Facebook, with its focus on mobile and desktop usability, serves as a valuable reference for
designing the Madboks platform for both types of devices. The Events page (Figure
provides insights into effectively displaying booked and discoverable events, while the create
listing page (Figure offers a potential template for event creation by administrators.

While these examples provide inspiration, Madboks’ unique domain-specific challenges must
be addressed to ensure the platform meets its needs. Ongoing collaboration with the product
owner and an analysis of the current system’s shortcomings will ensure a solution that adheres
to proven design principles while catering specifically to Madboks’ requirements.

10

Chapter 3

Analysis

Before design and development can begin, the fundamental goals of the project must be well
understood. Requirements for the new system, should be established in agreement with the
product owner and represent the needs of Madboks and its customers.

This chapter begins by mapping out and establishing a clear understanding of the current
Madboks system, identifying its strengths and weaknesses through system definition, a rich
picture, and the FACTOR criterion. Based on these insights, new functionalities are intro-
duced and evaluated through problem domain and application domain analysis. This process
narrows the focus to address the core needs for the future system, while considering the lim-
itations of the current system. Additionally, this approach will inform decisions related to
system architecture, data models, and implementation technologies. The analysis of the prob-
lem and current system is guided by principles outlined in the Object-Oriented Analysis and
Design book, OOAD, [9].

All information for this analysis was gathered from the product owner during the initial meet-
ing, where they outlined the current system’s functionality and their vision for the future
system. The full transcription of this meeting can be read in Appendix

3.1 System Definition

The system definition is the process of outlining and clarifying the scope, goals, components,
and interactions of Madboks. This is important for obtaining an understanding of Madboks’
purpose, thus ensuring a clear vision of the system’s objectives and functionality.

Madboks is a Copenhagen-based non-profit organisation dedicated to preventing food waste

by collecting unsold items from local food retailers and distributing them to customers in ex-
change for donations. The system includes all activities related to food collection, sorting,

11

logistics, customer reservations, and stakeholder communication. All processes are handled
manually by volunteers using basic tools like Excel for logistics, Google Forms for manag-
ing reservations, and Facebook/Instagram for real-time communication with customers about
availability, cancellations, and updates. The system promotes sustainability and involves stake-
holders such as admins, volunteers, customers, and food retailers.

3.2 Rich picture

A rich picture is a visual representation and mapping of the system definition, that gives an
overview of the people, objects, processes, structures, and challenges in the system’s problem
and application domains. It is used to illustrate the interactions, relationships, and elements
and helps us gain a shared understanding of the situation [9].

Request leftover food———————»

pare food it l
2 2 s
- 2 2

§ Food retailer
| &x S

: }

E—

P
a8 i
fii‘l‘;ﬁ?:’:'“f ;vﬂ TEERS —
W T

Sort food into boxes

Greate and post
schedule and routes

Customers

Google Forms
Madboks admin

Figure 3.1: Rich picture describing Madboks’s system

The process starts with one of the Madboks admins who contacts the local food retailer col-
laborators, and organise pick-up of their left-over food items. The admin then creates routes
and schedules, ensuring that they have enough volunteers and cars to pick-up the food items
at the retailers at the agreed time. The day before the event, one of the admins publishes a
Google Form booking sheet, and a Facebook event that links to the form. The event is then
promoted on their Facebook and Instagram accounts.

On the day of the event, volunteers drive to various retailers to collect the food. If they see that
there are more boxes than assumed, or people are contacting them to cancel their reservation,

12

they manually add boxes to the Google form, and make posts on their social media to inform
customers. Meanwhile, the food items are then sorted into boxes, and the customers who have
booked through the Google Form can pick up their box and pay their chosen donation. This
cycle persists for every box-collection event.

3.3 FACTOR criterion

In this section, the FACTOR criterion is introduced to define and understand the system ar-
chitecture in a concise form, building on insights gathered from the system definition and
rich picture. The FACTOR acronym represents six essential elements that must be considered
when designing a digital solution: Functionality, Application Domain, Conditions, Technology,
Objects, and Responsibility [9].

Functionality

Routes for collecting food are organised, and the number of boxes available for purchase is
manually adjusted and communicated by volunteers. Customers reserve boxes and boxes are
distributed at multiple locations at selected time slots. Social media is used to manage cancel-
lations, adjustments in box availability, and communication with customers.

Application Domain
Preventing food waste by collecting unsold items from local food retailers, sorting them in
boxes, and selling them at a symbolic price. This is done by administering the collection of
food, sales of food boxes, managing reservations, and communicating availability, collection
times, and locations.

Conditions
As a non-profit relying on volunteers with varying levels of technical expertise. Decisions are
driven by the goal of reducing food waste and supporting sustainability.

Technology

Madboks relies on publicly available solutions, namely Excel, Google Forms, and Facebook/Instagram.
Excel is used to calculate routes and box collection logistics, while Google Forms is utilised to
manage customer reservations of boxes. Lastly, Facebook handles real-time communication of
updates to customers and changes within the organisation.

Objects
The stakeholders are admins, volunteers, customers, and food retailers. The other objects are
spreadsheets, forms, food boxes, events, and social media posts.

Responsibility
The system works as an administrative tool and communication medium supporting the daily

operations of Madboks.

From the FACTOR criterion, it can quickly be determined that Madboks faces inefficiencies

13

due to manual processes. When a customer orders a box, they have to choose a pickup time.
One limitation that Google Forms has, is that one cannot set limitations on how many users
can book for each timeslot, causing overcrowding and logistical strain. In the meeting with the
product owner and founder of Madboks, Roxana Zlate, they pointed out that “Google add-ons
aren’t the best, so we can’t easily automate the process of limiting bookings per time slot”, (Zlate, 2024

C.1).

Volunteers must manually update box availability, a time-consuming and error-prone task.
Tools like Google Forms and Facebook lack integration and automation, leading to fragmented
workflows and limiting scalability. These inefficiencies should be considered throughout the
analysis to determine how to address them effectively.

3.4 Problem Domain Analysis

This section introduces the problem domain analysis, focusing on modelling the key aspects
of the system. This step in system development defines the scope and its interaction with the
real world, focusing on the specific part of the environment the system will manage, monitor,
or control. The purpose of this analysis, is to identify and model the classes, events, structures,
and behaviours relevant to the system’s context [9].

During the initial meeting with the product owner Roxana Zlate the scope of the fu-
ture system was drafted. While third-party tools like Google Forms and Facebook work well
individually, they lack a unified platform to streamline all processes. They mentioned in the
meeting that "Google add-ons aren’t the best”, and "people can't easily edit and adjust their booking”,
(Zlate, 2024 [C.7). They also pointed out that managing cancellations through Facebook is in-
efficient and time-consuming The future system aims to consolidate these functionalities
into a single, cohesive platform, providing greater flexibility and customisation.

3.4.1 C(Classes & Events

Classes and events are foundational concepts in system modelling, used to represent the en-
tities and actions within a problem domain. Identifying them involves compiling a list of
potential candidates and systematically evaluating their relevance to the system using criteria
outlined in the book [9].

For Madboks’ system, all objects involved in the organisation’s workflow should be considered
to model their real-world scenarios. Classes were analysed and evaluated based on whether
unique objects can be identified from them if they contain distinct information, whether they
represent multiple objects, and if they participate in a suitable and manageable number of
events [9]. All identified classes for Madboks can be seen in table in the Appendix.

Selection process of candidate classes
The selection of candidate classes was based on their alignment with the future system’s scope

14

and their relevance to addressing the core functionalities, including reservations and event
management. Classes that did not contribute directly to creating an understanding of the cur-
rent system and the functionalities of the future system were excluded.

The Volunteer class represents distinct individuals with specific attributes like availability and
tasks, while the Customer class uniquely identifies end-users managing reservations. The Food
Box class merges Organisation Box and Customer Box, simplifying functionality while main-
taining unique attributes like content and reservation status. The Transaction class tracks
payments with clear details such as amount, and the Location class identifies venues with
attributes like address and capacity. The Admin class represents system administrators with
defined responsibilities. Lastly, the Event and Reservation classes uniquely identify core sys-
tem workflows.

The Social Media Post, Social Media Account, and Google Forms classes were excluded
as the future system focuses on integrating communication and reservations into a single plat-
form, eliminating reliance on third-party tools like Facebook for updates and Google Forms
for bookings. Rental Car, Food Retailer, and Excel Sheets were excluded as transport and
external logistics, including food transportation tracking, fall outside the system'’s scope. Food
Item was omitted to avoid complexity, being better represented as attributes of Food Box.
Device was deemed unnecessary as it is implicit in user interactions.

In conclusion, the selected classes can be seen in table

Volunteer Customer Location
Food Box Reservation Transaction
Admin Event

Table 3.1: Table of the selected classes

Candidate Events

To identify relevant events, the criteria outlined in the OOAD methodology were applied, en-
suring events are instantaneous, atomic, and clearly identifiable at the time they occur [9]. In
Appendix D, table outlines the candidate events, which represent actions that impact the
selected classes.

Selection process for candidate events

The selection of candidate events focused on identifying distinct and meaningful actions that
directly impacted the selected classes. The selected events must align closely with the system’s
scope, focusing on reservations and event management.

15

RESERVATION CREATED, RESERVATION MODIFIED, and RESERVATION CANCELLED are included
because they represent key stages in the lifecycle of customer bookings, allowing for seamless
management of reservations. Similarly, EVENT CREATED, EVENT MoDIFIED, and EVENT CAN-
CELLED are integral for administrators to manage and update events, ensuring flexibility and
adaptability in event planning.

BougHT is included to track completed transactions for food boxes, ensuring payment ac-
countability within the reservation workflow. PREPARED was selected as it reflects a crucial
step in food distribution, documenting the preparation of food boxes for customers. Loca-
TION CREATED, LOCATION MoDIFIED, and LOoCATION DELETED were selected to facilitate the
accurate management of venues. SIGNED Upr/IN, SIGNED Out, and ACCOUNT DELETED were
included to support authentication and account management for customers. This will allow
customers to securely manage their reservations and account information.

Suirrep and DISTRIBUTED involve external logistics not managed by the system. PROCESSED
pertains to manual payments, intentionally left out. AssIGNED handles volunteer allocation,

which is not central to reservations or event management.

The list of the selected events can be seen in table 3.2

Reservation Created Reservation Modified Reservation Cancelled
Event Created Event Modified Event Cancelled
Location Created Location Modified Location Deleted
Bought Prepared Signed Up/In

Signed Out Account Deleted

Table 3.2: Table of selected events.

Event table
The event table highlights the interactions between the selected events and classes, creating
the foundation for modelling the system’s behaviour later in the analysis.

The selected classes are the primary entities, while the events capture the key interactions and

actions affecting these entities. Table [3.3| provides an overview of their relationships, helping
to determine their structure and, thus, providing a foundation for the system design.

16

Events/Classes Admin | Volunteer | Customer | Food Box | Reservation | Transaction | Location | Event
Reservation Created X X X
Reservation Modified X X X
Reservation Cancelled X X X
Event Created
Event Modified
Event Cancelled
Location Created
Location Modified
Location Deleted
Bought X X X X
Prepared

Signed Up/In
Signed Out
Account Deleted

XXX

KX X[X[X[X
XX X[XXX

XXX
XXX | X
XXX

Table 3.3: Event Table

3.4.2 Structure

As previously mentioned, the structure of the problem domain is made to build a foundation
for the system design. It represents the essential entities, their relationships, multiplicity, and
hierarchy within the Madboks system. By the OOAD principles [9], the relationships between
classes are modelled as generalisations, associations, and aggregations, representing the struc-
tural and functional connections within the system. The system is further divided into logical
clusters to improve modularity and clarity.

Generalisation

Generalisation is used to capture shared attributes and behaviours among classes while allow-
ing for specialisation. In the Madboks system, the User class serves as a superclass for Admin,
Volunteer, and Customer.

The User class contains shared attributes such as name, contact information, and login cre-
dentials, while specialising in:

¢ Admin: Managing the overall system operations, including creating, modifying, and can-
celling Events, as well as overseeing Reservations and coordinating with Volunteers.
Admins are also responsible for updating Locations.

* Volunteer: Assisting with event logistics and is linked to Event through an aggregation
relationship.

* Customer: Responsible for making reservations and completing transactions. Customers
interact with Reservations, which link them to Food Boxes and Events.

This structure supports scalability and modularity, allowing for the addition of new user roles.
For instance, the Volunteer role could be extended to include specialised types such as Event
Coordinator, who manages logistics during events, or Food Collector, who focus on picking
up food donations.

17

Aggregation Structure

Aggregation represents a "has-a" relationship between classes, where one class is composed of
other independent classes. This approach ensures that the system can manage these compo-
nents separately, allowing for flexibility in reusing or modifying classes without affecting the
overall structure.

The Event class aggregates both Volunteer and Location, representing its reliance on vol-
unteers for logistical tasks and venues for hosting the events. Each Event can involve multiple
Volunteers (1..%) and a single Location (1), while a Volunteer can assist in multiple Events
(0..%), and a Location can host multiple Events (0. . *).

The Food Box class aggregates Reservation, as each Food Box can either be reserved or remain
unreserved. A Reservation is always tied to one specific Food Box (1), while a Food Box may
or may not have an associated Reservation (0..1). Similarly, the Customer class aggregates
Reservation, as a Customer can make multiple Reservations (1..%), but each Reservation
is tied to a single Customer (1).

This aggregation ensures scalability and adaptability, allowing independent updates to, for
example, volunteers and locations without disrupting event functionality, supporting a mod-
ular design.

Association Structure
Association is used in the Madboks system to represent general relationships between classes,
capturing how objects interact with each other without implying ownership.

The Admin class is associated with Event, signifying the role of admins in managing events.
An Admin can oversee multiple Events (1. .), while each Event is managed by one Admin (1).

The Transaction class is associated with Event, Customer, and Reservation, representing the
connections involved in payment handling. A Transaction is linked to a specific Customer
(1) who makes the payment and references a Reservation (1) to specify the related booking.
Additionally, Transactions can reference an Event (0..1) for financial tracking.

These associations ensure that the interactions between classes are explicitly modelled. They
define relationships, such as the role of Admin in managing Events and Transaction handling
payments for Reservations and Customers. By avoiding tight coupling, the design preserves
the separation of concerns, allowing classes to function independently. This approach supports
scalability, enabling new features or relationships to be added without disrupting the existing
structure.

Class diagram of Problem Domain

The class diagram in provides a structured view of the Madboks system, modelling its
entities and their relationships. It is divided into two clusters: the Box Sale Cluster and the

18

Profile Cluster, ensuring modularity and clarity in capturing the system’s functionality.

The Box Sale Cluster represents the operational workflow, including event planning, food
box management, reservations, and transactions. Event is central to this cluster, occurring at a
specific Location and linked to Food Box through an aggregation relationship. Reservation

ties Customers to Events and Food Boxes, while Transaction handles payment processing.

The User Cluster focuses on user management, with User as a superclass for Customer,
Volunteer and Admin. Customer interacts with reservations and transactions, while Volunteer

assists with Events. Lastly, the Admin is managing the operations for the system.

Box Sale

Cluster

Location

Event

Transaction

Food Box

Reservation

User Cluster

User

i

Admin

Violunteer

Customer

Figure 3.2: Problem domain class diagram

The Transaction and Food Box classes remain in the class diagram to understand the sys-

19

tem’s structure and interactions. However, they will be excluded from the analysis and, conse-
quently, from the system design. While they helped in modelling the system’s context and re-
lationships, they do not align with Madboks’ scope. The Transaction class involves payment
processing, which is not managed by Madboks, as the system focuses on food distribution.
Similarly, the Food Box class represents a physical item that is not directly managed within
the system. Instead, the system tracks reservations and events. This shifts the aggregation
relationship from Food Box to Event, as reservations now serve as the connecting entity. Ex-
cluding these classes ensures the focus remains on reservation management, event operations,
and user interactions, aligning the system design with Madboks’ scope.

3.4.3 Behaviour

The purpose of this section is to model the dynamic aspects of the problem domain by iden-
tifying events, state changes, and attributes for each class in the class diagram. This analysis
clarifies how the classes interact through events, ensuring that their behaviours and relation-
ships are defined.

To achieve this, the event table is used to describe the behaviour patterns for each class,
mapping how they respond to specific events. From these behaviour patterns, the relevant
attributes are extracted for each class, making sure that the diagram accurately reflects the
system’s states and transitions.

As seen in the event table and class diagram, reservation has a relation to the Customer and
the Event. The reservation starts in an idle state until a customer creates it and the reservation
is active. Here, the reservation can be modified by an unlimited amount until it either gets
cancelled by the customer or the event has been concluded, thus marking the reservation ful-
filled. From the state diagram in figure the reservation gets the first draft of its attributes,
also shown in the figure.

20

Reservation

Reservation ID
Event ID
Customer ID
Status
Reservation Date
Contact Info

Modified

start —» Created

Fulfilled
Cancelled

Cancelled

Figure 3.3: State Diagram for Reservation Class

The Event class has a similar state diagram as the Reservation, where here the Admin is
making the operations on the event, as shown in figure ??. The Event can be modified in the
active state. An Event ends either with being cancelled by the Admin or the event has taken

place.

Event

Event ID

Location ID
Title/Description
Event Date

Status

Capacity
Volunteer List
Reservation Count

Modified

start —» Created

Fulfilled
Cancelled

Cancelled

Figure 3.4: State Diagram for Reservation Class

Customers start in the inactive state until they sign up or proceed to the guest state. While
being active or a guest, they can perform actions such as making reservations. A signed-in
Customer account ends when they sign out or delete their account permanently, while a guest
becomes inactive to the system when they have no active reservations. This can be triggered
by the specific event reservation being cancelled.

21

Customer
Customer ID
Name
Contact Info
Reservation History
Profile Details

Rsv. Created /Modified /Cancelled

start —

Rsv. Created (with Contact Info) Signed Out

Account Deleted

@

Rsv. Cancelled

Rsv. Modified

Figure 3.5: State Diagram for Customer Class: Notifications and General Activity

The Location class follows a structure similar to the Event class, where locations are allocated
or updated as needed. A Location starts in the unallocated state and transitions to allocated
when assigned to an event. Locations can be updated while allocated, reflecting changes in
details such as capacity or time. The lifecycle of a Location does not include an explicit
end-state unless it is removed from the system.

22

Modified

Location
Location ID
Deleted
Address start —| Created cee Deleted

Figure 3.6: State Diagram for Location Class: Assignment and Updates

The Volunteer class does not have a state diagram or events, since it is not directly linked to
the scope of Madboks, reducing the third-party tools for customers and the food distribution
events. Therefore, it would be redundant to include the possible events of the volunteers.

Lastly, the findings from this section will be used in the system design and implementation
phases later in the report. The defined state changes and attributes ensure that all relevant
behaviours are accounted for.

3.5 Application domain analysis

In this section, the Application Domain Analysis examines how the system interacts with users
and external stakeholders. The purpose is to translate the structural and behavioural models
from the problem domain into practical usage scenarios. This analysis identifies actors and
use cases, aligning the system’s design with user needs.

The current system’s actors are discarded after the findings from the problem domain anal-
ysis because the scope of the future system was narrowed down to only facilitate interaction
between the system and the Admin, Customer and, subsequently, Volunteer.

3.5.1 Actors

Actors are external entities that interact with the system. Identifying actors provides an
overview of who uses the system and how they interact with the internal components identi-
fied in the problem domain.

Customer
The Customer is a primary actor, as they are the end users who interact directly with the sys-
tem to reserve food boxes. Additionally, customers engage with events to buy the food boxes.

Admin

The Admin is another primary actor, responsible for managing the system’s operations. The
admin’s role is critical for logistical oversight, event management, and maintaining the system

23

integrity.

Volunteer

The Volunteer serves as a supporting actor, assisting with logistical tasks such as preparing
and distributing food during events. Volunteers are directly linked to events. Although they
do not initiate system actions like the Admin or Customer, their involvement is necessary for
the success of events.

3.5.2 Usage

Once these actors are identified, the use cases can be determined. Use cases describe how
actors interact with the system to achieve specific goals. They define the system’s behaviour
in various scenarios by capturing the actions between the actors and the system. Use cases
are essential for analysing requirements, bridging the gap between high-level concepts and
practical design, and ensuring the system supports user needs effectively.

The Customer interacts with the system to manage reservations and participate in events.
The main use cases for this actor include creating a reservation, where the Customer selects an
event and reserves a food box, with the system validating availability and confirming the book-
ing. The Customer can also modify a reservation by updating details such as time. Another
use case is cancelling a reservation, where the system adjusts availability and sends relevant
notifications as confirmations. Additionally, the Customer receives notifications about their
reservations when they create one.

The Admin is responsible for managing the system’s operations. A key use case is creating
an event, where the Admin inputs details like date, location, and capacity, and the system
makes the event available for reservations. The Admin can also modify events, such as up-
dating locations or capacities, with the system adjusting associated reservations automatically.
Cancelling an event is another use case, which prompts the system to notify all affected users
by a notification. The Admin also assigns locations to events.

The Volunteer supports event logistics and operations. One use case involves viewing assign-
ments, where the Volunteer checks their tasks or events, with the system providing details like
location and responsibilities. Updating availability is another use case, where the Volunteer
informs the system of their availability, allowing it to adjust task allocations.

3.6 Summary

The analysis of Madboks’ current system highlights significant challenges due to its reliance on
manual processes. Tools like Google Forms and Facebook, used for reservations and communi-
cation, lack integration and automation, resulting in inefficiencies, overbooking, and increased
administrative workload. While this setup has allowed Madboks to operate effectively at a
small scale, it presents challenges in terms of scalability, efficiency, and real-time coordination.

24

The problem domain analysis addressed these challenges by introducing structured entities
such as Reservation, Event, and Location, which replaced inefficient tools and aligned with
the system’s operational goals. These entities model key workflows, including reservation
management, event coordination, and location assignments. The application domain analysis
expanded on this by identifying primary actors—Customer and Admin—and their interactions
with the system through specific use cases like creating reservations and managing events.

By narrowing the scope to manageable elements and excluding features like payment pro-
cessing and food box handling, the analysis ensured a focused draft for improving operations.
These findings provide a plan for transitioning to the design phase, where the system’s struc-
ture, behaviours, and interactions can be translated into concrete requirements for a scalable,
user-centred solution.

3.7 Problem statement

The problem statement for this project represents the culmination of research and analysis
conducted thus far, serving to define the overarching goal and direction for the development
of the solution.

How can food waste among Danish retail stores be minimised by developing a new localised,
web-based platform for Madboks that enables them to create and manage events for dis-
tributing near-expiry food items and allows users to conveniently book them? The primary
evaluation metrics of the solution’s success should be its ability to address operational bottle-
necks, the user-friendliness of its interface, and scalability, all while emphasising timely food
distribution and waste reduction.

25

Chapter 4

Design

This chapter outlines the design of the new Madboks system, covering requirements definition,
database diagram, system architecture, UI design, and design criteria. These design decisions
are informed and iterated upon following the analysis of the current Madboks system [3| and
insights from the meeting with the product owner This section also serves to bridge the
gap between the project’s objectives and its technical implementation. Everything documented
so far should now aid in giving a more concrete plan for what is to be implemented, and how.

In the analysis |3} the scope was reduced to only focus on the administration of events on
the admin side and the customers’ booking experience. This means that other parts of the
Madboks organisation, such as retailer communication, logistics and volunteer scheduling are
excluded. Reducing the scope and creating realistic expectations for the product owner, in-
creases the probability for the project to succeed with the project and being able to deliver a
solid solution.

4.1 Requirements

When considering what requirements the new system should have, inspiration is drawn from
the state-of-the-art analysis [2, where design ideas from both Too Good To Go and Facebook
were presented. In addition, the analysis of the current solution [3 is essential to identify
requirements that ensure that all functionality of the current solution is included, as well as
identifying requirements that will improve the system.

Following the analysis, the development team identified key elements that significantly en-

hance/improve the UX flow, reduce manual labour, and ensure scalability. These elements
should be discussed with the product owner and refined into functional requirements.

26

411 MoSCoW

To propose suggestions for prioritisation, the MoSCoW prioritisation method is used. This
method divides the identified needs into four priority levels, as listed below:

* Must have: These are the functions that must be fulfilled for the system to be operational.

* Should have: These are the functions that should be fulfilled, as they may add significant
value.

* Could have: These are the functions that are nice to have, but do not have a major impact
if left out.

* Won't have: These are the functions that will not be implemented.

This method provides a clear understanding of what should be prioritised from highest to
lowest importance.

27

Must Have

Should Have

Could Have

Won’t Have

Event overview: Store and
display event information,
allowing admins to create,
edit, and delete events while
customers access relevant
details. Origin: Analysis

Event template: Enable
admins to create events
quickly with consistent de-
fault values. Origin: Prod-
uct Owner

Event template: Allow cus-
tomers to sign up for a wait-
ing list. Origin: Product
Owner

Payment: Enable customers
to pay for bookings online,
which is costly for a small
non-profit. Origin: Product
Owner

Booking system: A booking
process for when a customer
or guest reserve a food box
for an event. This includes
editing and cancelling the
reservations for the logged
in user. Origin: Analysis

Contact form: Allow cus-
tomers to contact Madboks
through the website. Ori-
gin: Product Owner

Schedule events: Enable
admins to schedule when
events are published. Ori-
gin: Product Owner

Internal communication:
Replace WhatsApp and
Facebook with integrated
communication, which
introduces GDPR and scal-
ability challenges. Origin:
Product Owner

Accounts: Support account
creation for admins and cus-

Volunteer sign-up: Enable
customers to request vol-

Recurring events: Auto-
matically generate recurring

Logistics: Facilitate man-
aging of routing and com-

booking confirmations to
customers. Origin: Analysis

Not logged-in users can
cancel or edit reservations
through a link provided in
the confirmation email. Ori-
gin: Product Owner

low admins to create events
beyond food distribution.
Origin: Product Owner

tomers, enabling event man- | unteer opportunities to get | events. Origin: Product | munication with retailers,
agement and bookings. Ori- | the email with information. | Owner which is not feasible. Ori-
gin: Analysis Origin: Product Owner gin: Product Owner

Email service: Provide | Reservations for non-users: | Other types of events: Al- | Mobile app: Develop a

mobile app for easier ac-
cess, which is outside the
project scope.Origin: Prod-
uct Owner

Location management: To
manage an event, the ad-
min must be able to perform
CRUD operations on a loca-
tion. Origin: Analysis

Volunteer =~ management:
The system could be scaled
to also include volunteer
management, such as work
scheduling. However, this
is not in the scope of this
project, and will not be
included. It is still included
in the analysis for creating
a basis for future imple-
mentation. Origin: Product
Owner

Compatibility: The website
must be accessible on both
desktop and mobile devices.
Origin: Product Owner

Table 4.1: MoSCoW Prioritisation

From the MoSCoW, user stories are created to make the development process more customer-
centric and align with an Agile workflow. Each feature is broken down into smaller, actionable

28

tasks that reflect the needs and priorities of the product owner. The user stories are seen in

Appendix

4.2 Database diagram

The database diagram provides a detailed overview of the system’s structure and the relation-
ships between the different tables in the database. The diagram builds on the class diagram
from the problem domain analysis [3.2) where additional tables, attributes and types are intro-
duced. The tables for the system are: Event, Location, Timeslots, Reservation and User. Figure
illustrates the tables and the way they are saved in the database. The Users table is not
displayed in the diagram, since it uses Supabase own "user” authentication table, which has its
own schema [15]. However, the user_id in the Reservations table refers to the id of the users
in the Supabase ‘user’ table. Furthermore, the schema for the Reservation table enables, that a
user can create multiple reservations.

The Event table is the central connection point of the diagram. It has a connection to Lo-
cations, Reservations, and Timeslots. This is determined from the analysis, where the Event
has a relation to both Reservation and Location. The schemas for the Reservation and Times-
lot table is designed to handle one to many relationship with the Event table. Similarly, the
Location and Event adapt to an one to many, since there can only be one location for an event,
whereas a location can be used for multiple events.

3 events (e

isCancelled
3 locations (e

o id
! & @@ id
reservations z o

ted_at nestamptz
@ created_a nr @ created_at timestanptz

& user_id & modified_at

modified_at
® event_id title
city

timeslot_id type

zip_code
donation_amount
date

street_address
comment number_of_boxes

apartment_etc

int T a 7

number_of_boxes {3 timeslots (&4 location_id it

default_description
o ea id u o ea id e isPublished

country

& modified_at timestamptz @ created_at timestamptz e

default_start_time
& created_at tinestampt modified_at mpt start_time .

default_end_time
event_id N
end_time default_number_of_
slot address

. t .
available_spots description

o Primary key # Identity /@ Unique <O Nullable €@ Non-Nullable

Figure 4.1: Class Diagram

29

4.3 System Architecture

The system should be built on a scalable architecture that ensures the system can handle
growth in the customer base while staying performant, easy to maintain, and flexible to be
able to introduce new functionalities. N-layer and n-tier architecture principles are utilised to
comply with the requirement of being able to scale by enabling separation of concerns.

4.3.1 N-Layers and N-Tiers Architecture

The n-tier architecture divides the system into distinct physical tiers, each deployed on sep-
arate servers to ensure a clear separation of responsibilities. In this setup, the presentation
and application tiers are hosted on an Ubuntu server using different ports, while the data tier
operates on Supabase’s dedicated servers. This design enhances scalability and reliability by
allowing additional tiers to be incorporated as needed, distributing risk across multiple servers
rather than relying on a single one [12].

Presentation (Frontend server):

The Presentation Layer in the Presentation Tier handles user interfaces, interactions, and data
transmission to the application layer. It manages front-end logic like UI rendering, input vali-
dation, and API communication via Axios than relying on a single one.

The Presentation Tier hosts the layer, implemented as a React application styled with Tail-
wind, running on an Ubuntu server with Nginx. Security measures include input validation
to prevent cross-site scripting and injection attacks, along with secure protocols for data trans-
mission between frontend and backend than relying on a single one [12].

Application (Backend server):

The Application Layer in the Application Tier manages the system’s business logic, processes
data, and mediates communication between the presentation and data layers. It handles tasks
such as user authentication, authorisation, and maintaining data consistency, while also inter-
acting with external services like Brevo SMTP for emails and Cloudflare for Captcha validation.
API requests defined with Fastify facilitate these operations than relying on a single one.

The Application Tier hosts this layer as a Node.js application deployed on an Ubuntu server.
This setup ensures secure and reliable handling of API requests than relying on a single one
[12]..

Data (Supabase):

The Data Layer in the Data Tier is responsible for storing, managing, and providing access to
the system’s data. It facilitates CRUD operations (Create, Read, Update, Delete) and ensures
data integrity and consistency. This layer interacts with the application layer through secure
APIs from Supabase.

The Data Tier hosts this layer on Supabase’s servers, utilising a PostgreSQL database. Su-

30

pabase provides secure APIs to facilitate interactions with the application tier for data access
and manipulation [12].

Scalability

By combining n-tier and n-layer architectures, Madboks achieves a system that is both scalable
and maintainable. The architecture allows each tier to scale independently and add new layers
without disrupting the existing setup. For instance, the frontend can handle increased user
loads without affecting backend performance.

The system architecture of the new Madboks system can be seen in figure

Http

'I' requests———>| ’
response——| SMTP server

Madboks-web

¢ y supabase Client
Q fast1fy (Presentation Tier)
% CRUD
®
Reverse proxy "/api' requests—p
(Nginx) <
((D)) D Madboks-backend Database Server
k — (Application Tier)
Client (browser) /ﬁ
- Hup CLOUDFLARE
t\\ Database
{i (Data Tier)
Cloudflare . .
Figure 4.3: Figure
showing the tiers used
Figure 4.2: Figure showing the system architecture of the new Madboks system for the system

4.4 Navigation

With the architecture outlined, the focus in design can shift to how the user should navigate
the application. This will result in obtaining an idea of which UI elements are needed to be
able to design them. To get an overview of the flow of the web application, a navigation
diagram is created based on the principles from OOAD [9]. As with the rest of the diagrams
and mock-ups created during the design phase, these are expected to provide a good starting
point for the implementation process.

4.4.1 Guest Navigation

This navigation diagram for guests at figure shows how unauthenticated users interact
with the system. The process starts at the Homepage (Not logged in), which serves as the

31

central hub. From the homepage, users can access the Auth pop-ups by either clicking the Join
button or the Login button. If the sign-up or login process is cancelled, users return to the
homepage. A successful login transitions users to a logged-in state. Guests can also navigate
directly to key pages, including Events, Booking Page, News, Volunteer Sign-Up, and About.
The diagram highlights two main flows: accessing authentication through sign-up or login
pop-ups and viewing content pages directly.

Not logged in Submit button clicked and verify email sent
Cancel button clicked Cancel button clicked
. Homepage " i ... (see admin logged in .
Signup popup Join (Not logged in) Login Login popup Logi - or customer logged in)
button button onf T
clicked clicked successiu
Y Y Y Y Y
[Events Booking Page [News [Volunteer Sign Up [About
Form submitted/
Form cancelled Form
submitted
. and
Upcoming event confirmation
clicked

mail sent

Figure 4.4: Navigation diagram for guests

4.4.2 Customer Navigation

This navigation diagram, in figure for logged-in users closely resembles the guest dia-
gram but includes additional actions available to customers. The main difference between
guests and logged-in users is that the Events page allows viewing the user’s reservations. The
page also supports editing or cancelling of reservations through respective pop-ups. This dia-
gram mirrors the guest flow while extending functionality to include reservation management,
reflecting the added capabilities available to logged-in users.

4.4.3 Admin Navigation

This navigation diagram for admins, in figure centres around the Dashboard, where ad-
mins manage events and locations. From the dashboard, admins can open Active Event or
Upcoming Event pop-ups to make changes or cancel them. Clicking the ‘Create new event’
button triggers a Choose Location pop-up, leading to either the Create New Event or Create
New Location pop-up based on location choice. In the Locations section, admins can create
new locations or edit existing ones using respective pop-ups, where changes can be applied
or cancelled. Logging out or deleting the account redirects the admin to the Homepage in the

32

state of ‘Not logged in’. The diagram simplifies event and location management for adminis-
trators.

4.5 UI design

Since there is no concept art or any concrete design ideas to go along, it is the development
team’s assignment to create flexible ideas that can then be iterated upon in collaboration with
the product owner. To achieve this, the team first starts with low-fidelity mockups and makes
it clear to the product owner that nothing is set in stone. Subsequently, after processing Zlate’s
feedback, some more concrete and higher-fidelity mockups are made to serve as guidelines for
the frontend implementation.

4.51 UI mock-up

The first design mock-up was created using paper prototypes, these prototypes were shown
to the product owner and were iterated upon so they could be used to create high-fidelity
mock-ups in Figma.

The Figma mock-up, shown in provided us with a detailed visual representation of the
layout, navigation flow, and core functionalities for the different user roles: guest, customer,
and admin. These mock-ups guide the design and highlight how each role accesses specific
functions based on its needs, defining the user experience and ensuring that the interface meets
the functional needs of each role. By outlining how specific features would be accessed and
utilised, the mock-ups served as a foundational guide for the frontend implementation process.

Continuing the iterative process, the design was presented to the product owner for review
and approval and was adjusted before implementation. This step ensured alignment with the
project’s goals and ensured that the product owner’s feedback was incorporated early in the
process, minimising potential rework during later stages of implementation.

33

Figure 4.5: Figma

4.5.2 Summary

With the initial design complete, Madboks’ new system focuses on making event management
and food box booking more centralised, simpler, more effective, and more automated. The
design process started by identifying key requirements inspired by modern solutions like Too-
GoodToGo and Facebook Events. These requirements were prioritised in collaboration with
the product owner using the MoSCoW method to ensure the system delivers the most value
to users.

The new system follows a user-centred approach, putting the needs of admins and customers
first. This is reflected in detailed user stories and Ul mock-ups created through an iterative
process incorporating product owner feedback, which ensures that the interface is intuitive
and easy to use for everyone. This can be verified through user tests with admins and cus-
tomers that used Madboks before.

To support Madboks” mission and future growth, the system design also takes scalability and
automation into consideration. Processes that were previously manual and located on differ-
ent platforms should now be centralised and largely automated, saving time and reducing the
chance of human error.

34

Chapter 5

Implementation

In the previous chapters, the problem and application domain were analysed, general require-
ments for a potential solution were defined, and those requirements were mapped to specific
technologies and realised into tangible mock-ups. With a clear plan and a solid understanding
of the project’s main objectives, the product’s development can begin.

5.1 Technology Stack

With a clear common understanding of the problem at hand and the essential requirements for
Madboks’ new system, the next step is to explore the specifics of how these components will
be built. The following section details the technology stack chosen to implement the proposed
system.

5.1.1 Development environment

GitHub will be the main platform for managing version control, tracking issues, organizing
the product backlog, and handling continuous integration for the project.

During development, feature-branching will be implemented, where each feature or bug fix
is developed in a separate branch. Branches are then merged into the main branch only af-
ter successful code review and testing, ensuring a stable codebase. For each pull request, a
template should be filled out containing a description, screenshots (if relevant), corresponding
backend or frontend branch, changes, related issues, and a checklist.

GitHub’s projects feature will be used to organize Product Backlog Items (PBIs) by size and
priority. PBIs are managed with columns including backlog, ready, in-progress, in-review, and

35

done. This setup allows for a clear overview of the project’s progress and aids in prioritizing
tasks based on project needs.

GitHub actions are implemented for running automated testing on all pull requests. Each
new change undergoes automatic tests before merging into the main branch, ensuring that
code remains clean and functional throughout development. Any dependencies and bugs are
documented as issues.

The quality control checklist is the following:
¢ Code passes all unit tests both locally and using GitHub actions.

¢ Code follows the established style and architecture agreed upon and passes the linting
test.

¢ Pull request title and description are clear and descriptive.

¢ Pull request includes any changes and additions and other relevant information and the
product backlog is updated to reflect the changes, if applicable.

¢ The code has passed a manual review

5.1.2 Application Technology

To build a scalable system that efficiently manages Madboks’ reservation and event manage-
ment, the following technology stack was used.

Frontend

The frontend will be developed using React, which is a popular JavaScript library for web user
interfaces. React allows the development team to create a responsive interface for Madboks’
users, including customers and admins, allowing them to easily navigate the system. React is
fast, well-documented, and maintained, and has lots of good libraries, making it an optimal
choice for future scalability and ease of maintenance. Also, numerous team members are al-
ready familiar with this technology, which means that the development process can start more
swiftly.

Backend

The backend is to be implemented with Node.js using TypeScript. Fastify will be used as the
API framework, as it is simple, fast, and well-suited for building responsive systems that han-
dle requests quickly.

Notifying customers through emails is deemed to be a high-priority feature of the product.
An SMTP (Simple Mail Transfer Protocol) server is essential for sending emails to customers
because it is the backbone - standard protocol - of email delivery. When you send an email,
the SMTP server processes it, determines the recipient’s email server, and routes the email
to its destination. Using an off-the-shelf solution ensures that the SMTP server is configured

36

with proper email protocols (SPF, DKIM, DMARC) to ensure that emails are recognized as
legitimate by recipient email providers, and allow bulk emailing. There are many functionally
equivalent services, and for this project, Brevo was selected because of its relatively high daily
limit of 300 emails with bulk sends allowed [2]. To ensure scalability, simply changing to a
paid plan can ensure that the system can handle lots of requests.

5.1.2.1 Database

Supabase will serve as the database for cloud data storage, offering a relational structure and
real-time data synchronization, and its free tier will not propose any severe limitations for
the developers. Supabase ensures robust data handling for Madboks’ requirements, such as
managing event reservations, user accounts, and real-time inventory updates. This database
choice ensures that relevant data can be accessed and modified seamlessly across different
parts of the application.

5.1.3 Ensuring security with Cloudflare Turnstile Captcha

The development team’s choice of implementing some basic security measures on the website
is with Cloudflare Turnstile Captcha. Running in the background, this third-party tool trusted
by numerous massive service providers is designed to differentiate between human users and
automated bots visiting a website and sending requests [3].

Other than checking the legitimacy of the user in general, Turnstile should be used with forms,
sign-ups, logins and against API abuse.

Compared to other captchas, such as Google’s ReCaptcha, Cloudflare’s invisibility (no need
to solve puzzles, it performs behavioural analysis in the background) makes it a solid choice
for not interfering with the user experience and the website’s interaction flow. Also, Turnstile
does not harvest user data [3].

5.1.4 DevOps and CI/CD

To streamline the development and deployment processes for Madboks, a DevOps strategy
was implemented using GitHub Actions. Continuous Integration (CI) and Continuous De-
ployment (CD) pipelines ensure the system remains reliable, scalable, and easy to maintain
throughout its lifecycle.

5.1.4.1 Development lifecycle

The development lifecycle is the same for both the backend and frontend. The developers
create feature branches for their PBIs. When the PBI is ready, a pull request (PR) is created
from each feature branch to the development branch. All PRs automatically run through the
CI pipeline, and another developer conducts a code review before it can be merged into the
development branch DEV. When the team is ready to release to production, a PR is created from
DEV to the pre-production branch PREPROD. Here it goes through the CI pipeline again and there

37

manual code review is conducted to ensure code quality and that potential merge conflicts are
resolved. If the CI pipeline runs without errors and the PR is approved by another developer,
it can be merged into PREPROD. When changes are pushed into PREPROD, it goes through the
CI/CD pipeline, where it deployed to the PREPROD server. Now, the developers can test that
it runs smoothly on the server and not only locally. When it has been successfully tested on
the PREPROD server, a PR to the production branch MAIN can be created. Again, the PR goes
through the CI pipeline and manual code review. When approved, PREPROD can be merged to
MAIN. When there are pushes to MAIN, the CI/CD pipeline is running, and this time it deploys
to the production server.

5.1.4.2 Frontend pipelines

Continuous Integration (CI)

GitHub Actions is configured to run tests and checks on all code changes automatically. This
ensures that any new code introduced does not break existing functionality. The full code for
the CI pipeline can be seen in Appendix and figure shows how the pipeline looks like
on GitHub Actions. The pipeline performs the following tasks:

* Code Linting and Formatting: ESLint is run on every pull request to ensure the code
adheres to the project’s coding standards, improving readability and reducing errors.

e Automated Testing: Jest tests are executed to verify the functionality of both new and
existing code.

* Build: Ensure it is possible to build.

€« Cl
@ Preprod to main #130 Re-run all jobs

| & summary
Triggered via pull request 5 hours ago Status Total duration Billable time Artifacts

Jobs sofiiagran opened #50 preprod Success 2m 29s 3m -

@ eslint
test q
° ci.yaml|

@ build on: pull_request

Run details

© Usage @ eslint 385 @ @ test 355 ® © @ build 535
&3 Workflow file

Figure 5.1: CI pipeline web

Continuous Deployment (CD)

The system uses an automated CD pipeline configured in GitHub Actions for deployment.
The full code for the CI pipeline can be seen in Appendix and figure shows how the
pipeline looks like on GitHub Actions. The pipeline performs the following tasks:

1. Build Artefact:

38

¢ The frontend application is built using React’s production build tools.
® Build artefacts are uploaded for deployment.
2. Artefact Download and Deployment:
¢ Artefacts generated during the build step are downloaded in the deployment job.

* Using SSH keys securely stored in GitHub Secrets, the pipeline connects to the
Ubuntu server.

¢ The server’s target directory is cleaned, and the new build artefacts are uploaded.

& CI/CD - production
@ Preprod to main (#50) #2 Re-run all jobs

| @ summary
Triggered via push 1 hour ago Status Total duration Billable time Artifacts

Jobs sofiiagran pushed -o- foc55a0 main Success 3m5s 4am 1

@ eslint

test
O tes deploy-production.yaml|
@ build on: push

@ deploy

aun details © esint e e @ test v:e e @ buid ses e © © deploy 18

& Usage

&Y Workflow file o Bl +

Figure 5.2: CI/CD pipeline web

5.1.4.3 Backend pipelines

Continuous Integration (CI)

GitHub Actions is configured to run tests and checks on all code changes automatically. This
ensures that any new code introduced does not break existing functionality. The full code for
the CI pipeline can be seen in Appendix and figure[5.3] shows how the pipeline looks like
on GitHub Actions. The pipeline performs the following tasks:

* Code Linting and Formatting: ESLint is run on every pull request to ensure the code
adheres to the project’s coding standards, improving readability and reducing errors.

e Automated Testing: Jest tests are executed to verify the functionality of both new and
existing code.

® Build: Ensure it is possible to build.

39

€« Cl
@ Preprod to main #102 Re-run all jobs

| ® summary
Triggered via pull request 2 hours ago Status Total duration Billable time Artifacts

Jobs sofiiagran opened #31 preprod Success 1m 45s 2m -
@ test

build q
° ci.yaml

on: pull_request

Run details
@ Usage
& Workflow file @ test 565 @ © @ build 30s

Figure 5.3: CI pipeline backend, the step test’ performs both linting and automated unit/integration tests

Continuous Deployment (CD)

The system uses an automated CD pipeline configured in GitHub Actions for deployment.
The full code for the CI pipeline can be seen in Appendix and figure shows how the
pipeline looks like on GitHub Actions. The pipeline performs the following tasks:

¢ ESLint is run on every pull request to ensure the code adheres to the project’s coding
standards, improving readability and reducing errors.

* Jest tests are executed to verify the functionality of both new and existing code.
¢ The backend builds using xx

e Using SSH keys securely stored in GitHub Secrets, the pipeline connects to the Ubuntu
server.

* The server’s target directory is cleaned, and the new build are uploaded.

<€ CI/CD - production
@ Preprod to main (#29) #2 Re-run all jobs

| @ Summary
Triggered via push 6 hours ago Status Total duration Billable time Artifacts

Jobs sofiiagran pushed - 4eb0011 main Success 2mds 3m -

@ test

© buid deploy-production.yaml

@ deploy on: push

Run details

@ Usage @ test 495 ® ® @ build 36s ® o @ deploy 18s

3 Workflow file

Figure 5.4: CI/CD pipeline backend

40

5.1.5 Hosting on server

Both the frontend and backend of Madboks are hosted on a dedicated Ubuntu server to en-
sure reliability and scalability. The server was created using OpenStack, accessed through
the platform https://strato-new.claaudia.aau.dk. The backend is deployed as a Fastify
application running locally on port 4000. To make the backend accessible externally and to
improve security and scalability, Nginx works as a reverse proxy. Nginx forwards incoming
requests to the backend server and ensures that it is properly configured for handling HTTP
traffic, enhancing both performance and security. For managing the server, Terminus is used.
Terminus simplifies server administration tasks, allowing the team to monitor and manage the
server efficiently. To ensure the security of the Madboks platform, the Nginx configuration is
designed to restrict access to the /api/ endpoints. These endpoints are configured to accept
requests only from the official Madboks website, and not directly via browsers or external
clients.

5.1.6 Docker

Using docker containers and images could be another solid choice to improve the deployment
pipeline. Docker simplifies application deployment by packaging the frontend, backend, and
dependencies into lightweight, portable containers.

Docker containers encapsulate the entire runtime environment, including application code,
libraries, dependencies, and system tools. This ensures that all developers, testers, and pro-
duction environments use the same configurations, reducing the risk of discrepancies between
environments.

Containers allow for streamlined deployment processes. Instead of setting up dependencies
manually on servers, the Docker images can be pulled and run on any host with Docker in-
stalled, reducing deployment complexity and time.

Docker’s lightweight nature makes it easy to scale the application horizontally. An exam-
ple of scaling horizontally is running multiple instances of the backend container in case of
increased API traffic. Kubernetes could be another helpful tool for orchestrating horizontal
scaling when working with Docker containers.

5.2 Application of Agile Principles

This project’s software development workflow follows a fundamentally Agile approach. This
approach was chosen because the events support an iterative process of continuous value de-
livery and evaluation in the context of external collaboration.

A key figure in this project is Roxana Zlate taking on the product owner role. Zlate is the

founder and project manager at Madboks and a logistics consultant at the United Nations
Populations Fund [8]. As product owner, their primary task is to represent and voice cus-

41

tomer and stakeholder needs while maintaining both a clear long-term product vision and
meaningful short-term goals. It will be crucial to continuously collect feedback from the prod-
uct owner throughout the software development process, and keep them in the loop while
performing product backlog refinement and task prioritisation.

The development team responsible for designing and implementing the software solution
consists of the authors of this paper. Their focus should be on constantly providing valu-
able increments to the product owner while maintaining transparency and facilitating open
communication about the product translating stakeholder feedback into implementable re-
finements. There is no dedicated Scrum Master in the team because every member is familiar
with Agile, and everyone actively participates in all Agile events. Responsibilities are handled
as a unit and management duties are implicitly shared. Any team member can facilitate meet-
ings and events.

The development team has no dedicated management support - however, the team’s supervi-
sor, Tung Kieu, could be considered to fulfil a similar role. Kieu’s support in providing the
necessary resources and tools, as well as supporting team autonomy while aligning the work
with the study goals is closely adjacent to what a manager would do.

The development process consists of 2-week sprints, each sprint starting with a sprint planning
session where the most important goals of the upcoming sprint are solidified and translated
into product backlog items. Product backlog items (PBIs) are estimated in size and impact, and
broken up into frontend and backend subparts or smaller tasks if needed. During a sprint,
developers take as many items as they realistically can, favouring the ones with smaller sizes
and larger impact.

During development, daily stand-ups are not strictly necessary but developers should make
sure that transparency is well maintained and dependencies are recognised and tackled smoothly.
At the end of the sprint, the developments are presented to the product owner and their in-
put is recorded and formulated into manageable tickets. When considering product backlog
items/tickets done, there is no "Definition of Done" list to look at, because having a static
list was often overlooked in earlier semester projects and was deemed redundant. Instead,
frontend items need acceptance from the product owner, and backend items need to be both
manually and automatically tested, reviewed, and considered stable.

The team is already familiar with Agile software development, so following a less-rigid, some-
what less structured version of Agile development that better suits the nature of a university
project did not mean that sprint planning or sprint reviews received less attention despite the
lack of regular daily stand-ups or sprint retrospectives.

GitHub’s projects and issues features are used throughout the project to support Agile pro-
cesses during development [6]. Projects are a good tool for keeping track of a virtual product
backlog, and issues are useful for dependency tracking and any potential tickets that may not
be directly relevant to the product owner but are more DevOps-focused.

42

To keep the process hands-on and dynamic, sprint planning sessions and PBI drafting are
primarily done on a blackboard, and projects and issues are used for documentation and for
tracking updates and progress afterward. In general, more physical and hands-on tools have
the advantage of preserving momentum and train of thought during discussions and brain-
storms.

With the workflow in place, the team can begin implementing the software solution. For
readability, product backlog items are labelled with sprint and frontend /backend item num-
bers, for example, S1F4 is the 4th item of the first sprint, and S3B2 is the second backend item
of the third sprint. If a product backlog item has undergone multiple iterations, this will also
be indicated in the name. Only the most relevant PBIs will be included, otherwise, they can
be found in the Appendix

5.3 Sprint1

5.3.1 Sprint Planning

Following the meeting with the product owner (see Appendix [C.), it was clarified that the
primary goal of the initial sprint(s) was to provide users with all of the same functionalities
as the ones currently available. A prerequisite to achieving this was setting up the central
components of the system — namely, a React web template, Fastify API framework for the
backend, and a Supabase database. Fine-tuning of the UI and smaller details of forms and
such were not that important yet.

Each page of the website should be built up using reusable components, whose business logic
is, if complex enough further separated into its own service file(s). Overall, a main focus on the
frontend should be a separation of concerns and reusability. Working on separate components
should also help with the development team working on the same page in parallel.

Given that the team gets their Figma mock-ups accepted or rejected before implementation,
the acceptance on the frontend side is highly dependent on recreating the styling from Figma
using Tailwind.

On the backend side, acceptance is a bit more problematic since the product owner is not
a domain expert. Here, the development team is highly dependent on the quality of its inter-
nal review process. To ensure some sort of acceptance, the feature should still be shown to the
product owner during sprint meetings.

5.3.2 Frontend items

¢ S1F1: Homepage displaying the most important information about Madboks (first itera-

tion) [F1.0.0.1

43

N G e W N e

e S1F2: Navigation bar with different items depending on admin/customer login and
non-logged-in user (hardcoded first iteration) |H.0.0.2

* S1F3: Upcoming events component displaying all of the upcoming events where users

can book boxes (only mock data) [H.0.0.3

¢ S1F4: Your events component that displays the events that a user has booked (only mock
data) [H.0.0.4
* S1F5: Location creation component for admins [H.0.0.5

¢ S1F6: Event creation component for admins enabling the creation of new events [H.0.0.6

* S1F7: Reservation form enabling customers to reserve boxes at events (only mock data)

[H.0.0.7

5.3.3 Backend items

e S1B1: CRUD for events enabling admins the creation, update and deletion of events

¢ 51B2: CRUD for location templates enabling admins the create, update and deletion of
location templates

* S1B3: CRUD for reservation enabling customers to create, modify and cancel a reserva-
tion

5.3.3.1 S1B1, S1B2, S1B3: CRUD for events, locations and reservation

Create, Read, Update and Delete functionality was created for events, locations and reserva-
tions. There were also implemented unit tests for all methods. It followed best practices by
being divided into routes, controller, service and model. Later on in the project there were
made changes to the the specific implementation of events, locations and reservations, since
the system had to handle time and timeslots differently. All classes extend the ‘Base’ class and
they all use the general CRUD implementation defined in baseService.ts.

Read methods: The following methods are performing read operations to the database. For
instance, the method "findByfield’ returns all rows in a table where a field equals a specific
value (this could be id for example) as seen in code snippet below. The function inputs a field
name and a value, this will only work with string data type fields, and then it makes a call to
Supabase to fetch the data that matches the value.

// Find by field
protected async findByField(
field: string,
value: string,
): Promise<{
data: T[] | null;
error: PostgrestError | null;

44

P> A
const { data, error }: PostgrestResponse<any> = await this.supabase
.from(this.tableName)
.select('*")
.eq(field, value);

if (error) return { data: null, error };

return { data: data!, error: null };

}

Create methods: The following method is performing create operations to the database. The
method ’createMany’ inserts a list of rows formatted as json objects into a class specific table,
such as Event.

// Create many
protected async createMany(
records: Jsonablel[],
): Promise<{ data: Jsonable[] | null; error: PostgrestError | null }> {
const { data, error } = await this.supabase
.from(this.tableName)
.insert (records)
.select('*");

if (error) return { data: null, error };

return { data: data!, error: null };

}

Update methods: The following method is performing update operations to the database. The
method "updateField” updates a specific field by finding the record with the id matching the
id parameter.

// Update field
protected async updateField(
id: string,
field: string,
value: any,

): Promise<{ data: T | null; error: PostgrestError | null }> {
const updateData = { [field]: value };
const { data, error } = await this.supabase

.from(this.tableName)
.update (updateData)
.eq(BaseFields.ID, id)

45

.select('*"')
.single();

if (error) return { data: null, error };

return { data: data!, error: null };

}

Delete method: The following method perform a delete operations to the database. The
method ’deleteByField’, deletes rows from the database based on a specific field value like
"updateByField’.

// Delete by field
protected async deleteByField(
field: string,
value: string,
): Promise<{ error: PostgrestError | null }> {
const { error } = await this.supabase
.from(this.tableName)
.delete()
.eq(field, value);

return { error: error || null };
}
}

5.3.4 Sprint Review

Based on the product owner’s feedback, the homepage needs to get a makeover, where the
view snaps to the sections of the page. Other than that, some minor frontend updates are also
requested. The more noteworthy adjustments are described as "second iterations".

5.4 Sprint 2

5.4.1 Sprint Planning

The focus of Sprint 2 was to build upon the functionalities established in Sprint 1. This in-
cluded enhancing the user interface, integrating email service functionalities, creating the ad-
min dashboard, and incorporating feedback and requirements from the product owner. The
overall sprint goal is to hook up all of the frontend components to the backend and thereby
replace mock data with actual data fetched from the database.

46

5.4.2 Frontend items
¢ S52F1: Homepage (second iteration)
¢ S52F2: Volunteer page|H.0.0.8

* S52F3: Email service frontend and corresponding forms (book a box and volunteer signup,
emails that do not land in spam)

* S52F4: Admin dashboard - new UI and edit location functionality [H.0.0.10
e S2F5: Login and signup UI connected with supabase auth

¢ S52F6: Connect upcoming events, your events and reservation with backend and authen-
tication

e S2F7: Event popup, showing information and description of the event. [H.0.0.9
* S2F8: Connect topbar with auth.

5.4.2.1 S2F1: Homepage (second iteration)

Based on the product owner’s feedback, the homepage was updated to snap between sections,
and the call-to-action buttons now stand out more clearly. Furthermore, the call-to-action
buttons’ stylings are changed to be more uniform and to stand out better. Some animations
are also added to the location cards and pictures to make the pages more engaging. Lastly, the
page is made more responsive and buttons are connected to other pages.

Becomea '/ ¢
Volunteer 4
!

Help reduce food waste,

secure your food box

today!
el =
Figure 5.5: Second iteration of the homepage 1 Figure 5.6: Second iteration of the homepage 2

47

Our Locations

g

Figure 5.7: Second iteration of the homepage 3 Figure 5.8: Second iteration of the homepage 4

5.4.2.2 S2F3: Email service frontend and corresponding forms

Sending confirmation emails out for box reservation confirmation and volunteer signups were
highly prioritised features by the product owner. Emails were selected because users cannot
be expected to check notifications on-site.

For the frontend side, forms for both box reservation and volunteer signup were connected
to the newly defined email service file containing all email-related frontend functionalities.

export const sendVolunteerSignup = async (volunteerInfo: Record<string, string>) => {
try {
const response = await axios.post(${url}/send-volunteer-signup”, volunteerInfo);

if (response.status === 200) {
console.log('Volunteer signup email sent successfully!');
} else {

console.error('Failed to send volunteer signup email:', response);
1
} catch (error) {
console.error('Error sending volunteer signup email:', error);
}
};

This function, sendVolunteerSignup, sends volunteer sign-up data (volunteerInfo) as a POST
request to a server endpoint ($url/send-volunteer-signup) using Axios. It logs a success mes-
sage if the server responds with status 200, otherwise logs an error message. Any network or
server errors during the request are caught and logged. The reservation confirmation function
works identically but receives its own function.

48

5.4.2.3 S2F5: Login and signup UI connected with Supabase auth

Supabase is the system’s chosen database, which comes with built-in features for authenti-
cation. The auth-flow implemented starts by signing up. The flow supports automatically
sending emails from a custom SMTP server to confirm the sign-up and a link to the system’s
confirmation page. The link URL has an access and refresh token embedded for the user,
which gets saved in the Supabase auth session and in "HTTPS only" cookies. When the user
uses the site after confirming the sign-up, their access is used to retrieve their session, keeping
them logged in. The session gets terminated if the user logs in on another device, logs out or
deletes their account.

Furthermore, there is functionality to change passwords, where the user gets an email to
another confirmation page to confirm their new password. Lastly, the user can only access
certain parts of the application when acting as a guest, logged-in customer or admin. For
example, only the admin can access the event and location management pages.

5.4.2.4 S2F6: Connect upcoming events, your events and reservation with backend/database

The components now dynamically update based on real-time data from the backend, ensuring
accurate and up-to-date information. E.g. when a user reserves a box, the reservation is
registered in the database and can be seen in the "your events’, and when an admin creates
an event, it can be seen in "'upcoming events” and as an option in the reservation page, the
components can be seen in figure

To display a list of event cards, a sub-component for a single event card was first created and
then mapped within the upcoming events component. The number of visible items adjusts
dynamically based on the window size, tracked via an event listener. A Madboks logo appears
at the end of the list when no more items are available, and a fade animation ensures smooth
transitions in the carousel.

// React Component for Event Display
<div className={ flex justify-start overflow-hidden whitespace-nowrap flex-grow
items-center transition-opacity duration-300
${isAnimating ? 'opacity-0' : 'opacity-100'}"}>
{events
.sort((a, b) => new Date(a.date).getTime() - new Date(b.date).getTime())
.slice(currentIndex, currentIndex + visibleEvents)
.map (event => (
<Event
key={event.id}
title={event.title}
date={new Date(event.date).toDateString()}
opening_hours={formatTime (event.start_time, event.end_time)}
id={event.id}
onClick={onClick}
/>

49

N}
{currentIndex + visibleEvents >= events.length && (
<div className="flex flex-col items-center">
<img
src={madboksLogo} alt="Madboks Logo"
className="mb-2" style={{ maxWidth: '10rem' }}
/>
</div>
)}
</div>

The transition-opacity and duration-300 classes enable smooth visibility transitions, toggling
between opacity-0 (invisible) and opacity-100 (fully visible) based on the isAnimating state.

The events array is first sorted by date in ascending order using the Array.prototype.sort
method. Each event’s date is converted to a Date object and compared using getTime() to
ensure accurate sorting. After sorting, the Array.prototype.slice method selects a subset of
events to display, starting at currentIndex and including up to visibleEvents items.

The selected events are then mapped into Event components, with properties such as title,
a formatted date (using toDateString()), opening_hours (calculated with a helper function for-
matTime), and an id. Each Event component also includes an onClick handler for interactivity.

At the end of the event list, if the currentindex plus the number of visibleEvents exceeds
the total number of events, an additional div is rendered. This contains a centered logo. This
ensures that a fallback element is displayed when all events have been shown, providing a
visual cue to the user.

50

1

Sundholmsvej 28A
8.12.2024, 15:00 - 16:30 Edit Cancel
Your timeslot: 16:10 - 16:20

Sundholmsvej 28A
8.12.2024, 16:00 - 15:30 Edit Cancel

Your timeslot: 17:00 - 17:10

Show More

i —— i — |

p p >
Sundholmsvej 28A Sundholmsvej 28A Kapelvej 44 Kapelvej 44 Madboks food distru...

Sun Dec 08 2024 Sun Dec 08 2024 Wed Dec 11 2024 Thu Dec 12 2024 Fri Dec 13 2024

16:00 - 15:30 15:00 - 16:30 15:00 - 16:00 16:00 - 17:00 16:00 - 17:00

Figure 5.9: Upcoming events

5.4.3 Backend items
* S2BI: Setting up the server and hosting + pipelines [H.0.2]

e S52B2: Email service backend and email templates (SMTP server)

5.4.4 S2B2: Email service backend and email templates

The email service backend uses Brevo’s SMTP service to send emails out to users, potentially
in bulk.

The service follows a singleton architecture operating from a single instance of a class. Its
functionalities are broken down into two files, mailRoutes and mailService, both contained in
a single folder also containing their templates.

Using Brevo is very straightforward with Fastify. The function in mailService for sending
a confirmation mail simply needs the correct arguments and a template.

public async sendConfirmationEmail(to: string): Promise<void> {
const subject = 'Thank you for your order!';
const text = 'Remember to pick up your order at the specified time.
For any questions, please contact us at help@madboks.com.';
const html = this.loadTemplate('bookingtemplate.html');

51

await this.sendMail(to, subject, text, html);

The code defining the POST endpoint at /api/send-confirmation-email using Fastify is seen
in Appendix It extracts the to field from the request body, validates it, and returns a 400
error if it’s missing. If valid, it uses the MailService to send a confirmation email. On success,
it responds with a 200 status and a success message; on failure, it logs the error and returns a
500 status with an error message.

Email templates consist of straightforward HTML to adhere to the standards providers. For
each different email, their template is imported and used inside the corresponding email ser-
vice function.

o madboks.noreply@8359626.brevosend.com 1:50 PM (23 minutes ago) “
. tome v

Thank You for Signing Up to Volunteer! &5

We are thrilled to have you on board. We will review your information and reach
out to you shortly.

Your enthusiasm means a lot to us. See you soon!

Best regards,
The Madboks Team @

Figure 5.10: Email example

For now, emails do not include dynamic data. The main focus during this sprint was to set the
technology up and make sure it worked.

5.4.5 Sprint Review

The email templates need to receive a minor makeover and include more personalised informa-
tion. Also, some more frontend changes are requested, most importantly mobile compatibility
for at least the customer side of the application. Everything else is accepted and the website is
now in a nearly presentable shape. Therefore, user tests are scheduled for the next sprint.

52

5.5 Sprint3

5.5.1 Sprint Planning

The main focus of sprint 3 is to finish up the website’s core functionalities, improve security,
and make the system stable for production. The website needs to be deployed and stable
enough to perform remote tests with both admins and customers.

5.5.2 Frontend items
* S3F1: Mobile Compatibility
e S3F2: Cloudflare Turnstile (Captcha) and integrate with login, signup and reservations
* S3F3: About us page
* S3F4: Admin dashboard makeover, timeslot fix and edit active and upcoming events
¢ S3F5: 'Event’ page updates - Ul fix and pop-up to edit and cancel booked events.
* S3F6: Reservation with timeslots

¢ S3F7: Location page for admin

5.5.3 S3F1: Mobile Compatibility

Based on the product owner’s feedback, being a relatively high-priority requirement and gen-
eral accessibility reasons, it was chosen to spend time assuring that the entire website is mobile-
compatible. This meant reworking on the frontend code, focusing on smaller screen sizes and
responsiveness during any resizing.

On the positive side, several pages were already highly responsive before starting on this
PBI, but in hindsight, this should have been considered acceptance criteria for all pages from
the start of the project.

Some of the most crucial reworks were the top bar turning into a burger menu when the
screen got to an approximate tablet/phone size. Furthermore, it had to be ensured that im-
ages and components scaled properly and the resulting layout would still look acceptable.

5.5.4 S3F2: Cloudflare Turnstile

Cloudflare Turnstile is used for the captcha challenges, ensuring that user traffic is not by bots.
The invisible captcha is used so that the user does not have to interact with a Ul component,
but the process gets executed in the background. The captcha is a form that can be added on
specific pages where the captcha must be issued to verify the user. Supabase provides support
for custom captcha when using auth functionality, which means that Turnstile has to validate
the user to be able to log in and sign up.

53

20

21

22

23

24

25

26

27

In the code snippet, the Turnstile uses a sitekey provided by Cloudflare which is not a se-
cret key and the name of the action for the form where it is implemented at. The function
verifyToken sends the challenge token to the backend and if the captcha fails, an error mes-
sage is shown.

const TurnstileComponent = ({ formName }: TurnstileComponentProps) => {
const { setErrorMessage, verifyToken } = useTurnstile();

const sitekey = process.env.REACT_APP_TURNSTILE_SITE_KEY || "";
if (!sitekey) {

console.error("Turnstile site key is not set.");
setErrorMessage ("Turnstile site key is not set.");

}
return (
<Turnstile
sitekey={sitekey}
action={formName}
refreshExpired="auto"
onVerify={(token) => verifyToken(token)}
onError={(err) => {
console.error('Turnstile error', err);
setErrorMessage (err) ;
1
onExpire={() => {
console.error ('CAPTCHA expired');
setErrorMessage (' CAPTCHA expired');
1}
/>
)l

}

5.5.5 S3F4: Admin dashboard makeover, timeslot fix, and edit active and
upcoming events

The Admin dashboard now differentiates between “active” and ‘upcoming’ events. The active
events are published and can be seen by the customer, but the upcoming events are not yet
published, and can only be seen by admin. When an admin creates an event and fills out the
start/end time of the event, the system automatically creates timeslots with 10-minute inter-
vals between them. As wanted by the PO, the total number of boxes for the event is equally
distributed between the timeslots.

54

1

3

In the dashboard, it is possible to click on upcoming events to edit them, this form is the
same as when you create a new event. The active events have a different edit page, as it is
only possible to add/remove boxes. When the number of boxes is updated the timeslots are
updated accordingly. If the admin tries to change the total number of boxes to a number that
is less than what is already reserved, the admin gets an error message, and cannot proceed
with the changes.

Update event

Edit Event: Sundholmsve] 284, 2300 Kobenhavn §

Tt Addross.
84, 2000 Kobarhavn S Kapohel 44 Kapee 44,2200 Koberbavn

From: o

1600 ° e °

10kg,ulof s,

oate Numbor of boxes

122008 1Y

IF YOU DON'T COME, YOUR BOX

Descrpton

Bring your own bags - one fo nst & veggies and one fo bead,

PLEASE ONLY BOOK IF YOU KNOW YOU CAN COME! F YOU
DONT COME, YOUR BOX GOES TO WASTE.

Figure 5.11: Edit active event Figure 5.12: Edit upcoming event

Scheduled Events

@y Dashboard Locations Volunteer ~ Events. o

Active events

‘Sundholmsve] 28A
Sun Dec 08, 16:00 - 1530

Total Boxes: 100 Al Locations

‘Sundholmsvej 28A

Sun Dec 08, 15:00 - 1630 a
Avalable Boxes: 50
Total Boxes: 100
Show More
BOKS
dst

Scheduled Events Kapelvei 44 Urmaderstien 28 ‘Sundholmsvel 28A

Figure 5.13: Upper part of admin dashboard Figure 5.14: Lower part of admin dashboard

Method: Update timeslots

When the number of boxes in the Ul is changed, the handleChange method is called. The
handleChange method dynamically updates the form data when the total number of boxes
is modified. It prevents overbooking by comparing the new number of boxes with already
reserved boxes and disables submission if the new value is invalid.

const handleChange = (e: React.ChangeEvent<HTMLInputElement | HTMLTextAreaElement |
< HTMLSelectElement>) => {
const { name, value } = e.target;
setFormData((prev) => {
const updatedFormData = { ...prev, [name]: value };
if (name === 'number_of_boxes') {
const newNumberOfBoxes = Number (value);

55

if (newNumberOfBoxes - reservedBoxes < 0) {
setIsOverbooked(true) ;
setDisabled(true);
return updatedFormData;
}
setIsOverbooked(false);
setDisabled(false) ;
updateTimeslots (newNumberOfBoxes - originalNumberOfBoxes) ;
}
return updatedFormData;
s

This calls the method updateTimeslots seen in Appendix[H.0.5| The updateTimeslots method
recalculates and redistributes the number of available spots across timeslots when the total
number of boxes changes. It first calculates the difference between the target and current total
spots, distributing the adjustment equally across all timeslots. Any remainder from the divi-
sion is distributed incrementally to individual timeslots. If any timeslot ends up with negative
spots, these are corrected by redistributing the deficit among other timeslots with available
spots. This ensures that all adjustments maintain a valid state with no negative values while
keeping the distribution as balanced as possible. The backend code for updating is presented
in subsection

5.5.6 S3F5: "Event’ page updates - Ul fix and pop-up to edit/cancel booked
events.

In the "Events’ page, the customers can see what timeslot they have booked for, and click on
‘edit’ to change the timeslot, or ‘cancel’ to cancel the reservation. In addition, the name "your
events’ is changed to "your bookings’ based on feedback from the PO. Also, the default image
is changed to the "Madboks’ image used on their current Facebook events. This can be seen in

figure

56

Your Bookings

Sundholmsvej 28A
8.12.2024, 16:00 - 15:30 Edit Cancel
Your timeslot: 16:40 - 16:50

Kapelvej 44
11.12.2024, 15:00 - 16:00 Edit Cancel

Your timeslot: 15:50 - 16:00

Show More

Sundholmsvej 28A Sundholmsvej 28A Kapelvej 44 Kapelvej 44 Madboks food distru...
Sun Dec 08 2024 Sun Dec 08 2024 Wed Dec 11 2024 Thu Dec 12 2024 Fri Dec 13 2024
16:00 - 15:30 15:00 - 16:30 15:00 - 16:00 16:00 - 17:00 16:00 - 17:00

Figure 5.15: Event page

The backend code for updating timeslots is presented in subsection [5.5.12}

5.5.7 S3F6: Reservation with timeslots

The reservation page is updated so it works with timeslots. The page only shows available
slots, ensuring that customers can only book within the event’s capacity to prevent overbook-
ing. When booked, it updates the available spots for the timeslot booked in the database and
the admin dashboard.

Only the available timeslots will be displayed, and if an event is fully booked (no available
timeslots), the message “this event is fully booked” will be displayed. The timeslots and “info
before you book” (event description) are only displayed when you select an event to reserve,

see figure

Validation is added so that the customer has to fill out all fields and ’confirm’ terms and
conditions (info before you book) before they can book. Custom error messages and success
pop-up are implemented. In addition, if the user is logged in, their contact info is already
added, to effectively proceed with their booking. If not logged in, the ‘contact’ fields have to
be manually filled out. The contact information part is seen in figure

57

Book your Madboks.
Book your Madboks Kapelve 44, 2200 Kobenhaun N, Fr Dec 13, 1600 - 17:00
Solect an avont

Info before you book ~

How many boxes woukd you ke to book?

Ghoose tme for pickup |

Ghoosa your denasen

25 0KK 500KK 75 DKK.

6001610 16I0-1620 16301640 16401650 1650-1700

Fi .16: R ti ithout a selected t o . .
igure 5.16: Reservation page without a selected even Figure 5.17: Reservation page with selected event

Contact info ~
First Name Last Name Background:

Sofia Gran Student | Employed | Unemployed Refugee background

Email Phone Number Single parent Pensionist ~ Low income family =~ Other

developer.sofiiagran@gmail.com

Comments

Are you interested in volunteering with Madboks in the future?

Figure 5.18: Reservation page

The backend code for reserving is presented in subsection

5.5.8 S3F7: Location page for admin

There is now a location page for admin, where they can create new locations and see/edit/delete
current locations. It is still possible to do this from the dashboard as well, however, using the
locations page can be more effective. The location page can be seen in figure

58

Dashboard Locations Volunteer Events g

a Y

All Locations

=TT s 2t 2=

Kapelvej 44 Urmagerstien 28 Sundholmsvej 28A dsf

Figure 5.19: Location page

5.5.9 Backend items
¢ 53B1: Cloudflare Turnstile Captcha
® S3B2: Setup of pre-production server
* S3B3: Timeslots/Locations/Events/Reservations makeover and fix

¢ S3B4: Email updates (send multiple emails at once, add personal information to format-
ting using Handlebars)

* S3B5: Docker Setup

5.5.10 S3B1: Cloudflare Turnstile Captcha

From the frontend, the Turnstile issues a challenge, that must be passed, to receive a token.
The challenge token is sent to the backend to verify the user with an API call to Cloudflare
which sends a response of either success or failure back to the frontend.

5.5.11 S3B3: Setup of pre-production server

A pre-production server is set up so that changes can be tested on a server before being merged
into production. This is created to mitigate hotfixes on the production server, as the website
and backend may act differently when deployed to the server, contra being hosted/tested
locally.

59

W N e

@

L2 T S O

© ® N o

5.5.12 S3B4: Timeslots/Locations/Events/Reservations makeover

To make a reservation of timeslot work as the PO wanted, with a maximum number of spots
available per timeslot, there has to be quite a makeover in the backend and the database. To
ensure that timeslots were updated correctly, they became their own table in the database,
instead of being a string array in the event table. All classes still use the CRUD methods
presented in sprint 1 but the business logic has been modified to work with the newly
created timeslot table.

Timeslots

Instead of timeslots being an property of events, it became its own table. In the timeslot table,
there is a foreign key ‘event_id’, which refers to the event table, and if an event is deleted, all
timeslots that refer to that event are deleted as well. In addition, the table has a column ’slot’
which is a string that represents the timeslot (this is auto-generated in the frontend, based on
the event start/end time), and ’available_spots” which is a number that represents how many
available spots is left for that timeslot.

The constructor for timeslots is as follows:

id?: string | null;
created_at?: Date | null;
modified_at?: Date | null;
event_id: string;

slot: string;
available_spots: number;

In the database, the fields id” and ‘event_id’ is converted to type GUID.

Events

The event table needed an update as well. To make the generation of timeslots easier, the event
had to have columns start_time and end_time of datatype "time’, instead of just a column "time’
of datatype string. Then the array called "Timeslots” is removed, since it is no longer needed,
when timeslot has a foreign key reference to the event table.

The constructor for events is as follows:

id?: string | null;
created_at?: Date | null;
modified_at?: Date | null;
title: string;
description: string;
location_id: string;
address: string;

type: string;
number_of_boxes: number;
date: Date;

60

start_time: string;
end_time: string;
isPublished?: boolean;
isCancelled?: boolean;
scheduled_time?: Date;

In the database, the fields ’start_time’ and ‘end_time’ are converted to type 'Time’, and ’id’

and ‘location_id” are converted to type GUID.

Location

Since the location table works as a template for event creation, the location table has to have
the same structure as events. Therefore, the column “default_opening _hours’ of the datatype
string, was replaced by columns "default_start_time” and 'default_end_time” of datatype "time’.
Also, the ‘default_timeslots” column was no longer needed, as these are generated automati-

cally based on start/end time in event creation.

The constructor for locations is as follows:

id?: string | null;
created_at?: Date | null;
modified_at?: Date | null;
city: string;

zip_code: string;

country: string;
street_address: string;
apartment_etc?: string;
default_number_of_boxes?: number;
default_description?: string;
default_start_time?: string;
default_end_time?: string;

In the database, the fields "default_start_time” and ’default_end_time’ are converted to type

"Time’, and “id’ is converted to type GUID.

Reservations

When making a reservation, the customer reserves a specific timeslot, therefore, a foreign key

“timeslot_id’ that refers to the timeslot table, had to be added.

The constructor for locations is as follows:

id?: string | null;
created_at?: Date | null;
modified_at?: Date | null;
user_id: string;

event_id: string;

61

timeslot_id: string;
donation_amount: number;
number_of_boxes: number;
comment?: string;

In the database, the fields "id’, ‘event_id’, 'location_id" and ‘user_id" are converted to type
GUID.

Method: Book box

In reservationRoutes.ts: A POST request to the reservation endpoint calls the reservationCon-
troller.createReservation method seen in Appendix

The method ’createReservation’ in reservationController.ts, seen in Appendix[H.0.6.2} calls the
reservationService.createReservation to handle business logic.

Method ’createReservation’ in reservationService.ts, seen in Appendix validate the
reservation data. It attempts to decrement the available_spots for the specified timeslot us-
ing the bookTimeslot method. If timeslot booking succeeds, it creates the reservation in the
database. If it fails, it rolls back the timeslot booking.

The method ‘bookTimeslot” in timeslotService.ts, calls the stored procedure ‘decrement_available_spots’
to decrease the available spots for a timeslot in the database. If no spots are available, an ex-
ception is raised.

public async bookTimeslot(id: string): Promise<Result<Timeslot, BaseError>> {
const { error: rpcError } = await this.supabase.rpc(

'decrement_available_spots',

{ p_id: id 3,

)3

if (rpcError) {
return ResultFactory.Err(
this.handleSupabaseError (rpcError, 'decrementTimeslot', { id }),
);
}

const { data, error } = await this.findById(id);
if (error)
return ResultFactory.Err(
this.handleSupabaseError (error, 'findTimeslotById', {
id,
b,
)3
return this.validateAndMapRecord(data!);

62

5

The stored procedure ‘decrement_available_spots’ updates the database, ensuring the available
spots count reflects the booking.

CREATE OR REPLACE FUNCTION decrement_available_spots(p_id UUID)
RETURNS void AS $$
BEGIN

UPDATE timeslots

SET available_spots = available_spots - 1

WHERE timeslots.id = p_id AND available_spots > O;

IF NOT FOUND THEN
RAISE EXCEPTION 'Timeslot not available or invalid ID';
END IF;
END;
$$ LANGUAGE plpgsal;

Method: Cancel reservation
The method ’cancelTimeslot’ in timeslotService.ts, calls the stored procedure increment_available_spots
to increase the available spots for a timeslot when a reservation is cancelled.

public async cancelTimeslot(
id: string,
): Promise<Result<Timeslot, BaseError>> {
const { error } = await this.supabase.rpc('increment_available_spots', {
p_id: id,
b;

if (error) {
return ResultFactory.Err(
this.handleSupabaseError (error, 'incrementTimeslot', { id }),
)g
}

return ResultFactory.0Ok(undefined) ;

The stored procedure ‘increment_available_spots” updates the database, ensuring the available
spots count reflects the cancellation.

CREATE OR REPLACE FUNCTION increment_available_spots(p_id UUID)
RETURNS void AS $$
BEGIN

UPDATE timeslots

SET available_spots = available_spots + 1

63

WHERE timeslots.id = p_id;

IF NOT FOUND THEN
RAISE EXCEPTION 'Timeslot not found for ID %', p_id;
END IF;
END;
$$ LANGUAGE plpgsql;

Method: Edit timeslot for reservation

The method ‘updateReservationTimeslot’ in reservationService.ts, seen in Appendix [H.0.6.4}
fetches the current reservation details. It calls the method ’cancelTimeslot’ to increment avail-
able_spots for the former timeslot. It then calls the ‘bookTimeslot’ to decrement available_spots
for the new timeslot. Then it updates the reservation record with the new timeslot’s id. If up-
dating the new timeslot or reservation fails, it rolls back changes to the previous timeslot,
ensuring database consistency.

Method: Update active event

The method ‘updateActiveEvent’ in eventService.ts, fetches the original event details for roll-
back if needed seen in Appendix Then it updates event details (description and num-
ber_of_boxes) in the database. It calls updateTimeslotsAvailability to adjust the available_spots
for associated timeslots. If timeslot update fails, it rolls back, to maintain consistency.

The method ‘updateTimeslotsAvailability’, in timeslotService.ts, seen in Appendix[H.0.6.6} first
validates each timeslot record. Then it updates the available_spots field for each timeslot in
the database. It returns the updated records if all operations succeed or an error if any update
fails.

5.5.13 S3B5: Email updates (send multiple emails at once, add personal
information to formatting using Handlebars)

The backend of the email service was updated to be able to send emails in bulk and to send
multiple different emails with the same request. In its current implementation, an email is
sent to the admins with all of the relevant information about a volunteer signup, and a new
and unique email is sent to the volunteer confirming their sign-up.

64

Y madboks.noreply@8359626.brevosend.com 1:50 PM (24 minutes ago) “«

[) tome v

New Volunteer Signup

A new volunteer has signed up with the following details:

« Name: Bence Szabo

« Email: benceszabo657 @gmail.com

« Phone: 31400523

« Availability: Every second week

« Interests: IT, Website and Media management, Fundraising

Please review their details and follow up.

Figure 5.20: Variables in emails

To enable the input of variables into an email rather than sending a static message, the Han-
dlebars library was used, and the following helper function was written for it.

private compileTemplate (
templatePath: string,
variables: Record<string, string | number | boolean>,
): string {
try {
const templateContent = fs.readFileSync(
path.resolve(__dirname, templatePath),
'utf8',
)3
const compiledTemplate = handlebars.compile(templateContent) ;
return compiledTemplate(variables);
} catch (error) {
console.error('Error compiling email template:', error);

[
>

return

This compileTemplate function reads a Handlebars template file from the given templatePath,
compiles it using the Handlebars templating engine, and returns the rendered string with the

65

provided variables. If an error occurs during file reading or template compilation, it logs the
error and returns an empty string.

5.5.14 S3B6: Docker Setup

The docker setup is introduced to create images of the application, so it can be run in a
container for the developers or sent to the server to be deployed. This will remove complexity
from the GitHub deploy file and make sure the application is stable regardless of the local
machine.

5.5.15 Sprint Review

The website was at the end of the sprint in an acceptable state to conduct admin and user tests.
The structure of the user tests is described in the chapter 'Quality Assurance’ The results
from these arguably provide the most meaningful feedback up until now.

5.5.15.1 User acceptance test

Results and Insights from Admin tests:

The overall feedback on the product was very positive. Both the product owner and the other
Madboks admins were impressed with how far the project had come within the limited time
frame. They expressed overall satisfaction with the product and its design. They emphasised
its efficiency and an intuitive, easy-to-use and easy-to-learn interface. With that being said, it
was discovered some bugs and some business acceptance criteria that were not fully met, as
well as ideas for future work on the product.

Discovered bugs:

The create event form disappears on larger screens.
* The source code is revealed using the debug inspector.
* You are automatically logged in as the last person that logged in.
* ’‘See events’ button on the home page does not work.
Business acceptance criteria not met:
* The “default’ information in the event description should be modified.
¢ Create event/location should have better validation and error handling.
¢ There should be an info message when trying to book more than one box.
¢ Sign-up as a volunteer should open in a new tab
¢ Link.s to socials should be open in a new tab.

* Should be able to book for others - by changing the 'receiver’ of the reservation in the
contact form.

66

* When booking an event, it should be removed from "upcoming’ and only display in "your
bookings’

e Add validation to avoid that two events with the same address can be created on the
same day and time.

Future work:
¢ The volunteer sign-up should be linked to the already existing "welcome’ mail.
¢ Implement waiting lists on fully booked events.
* Make social media references in the description work as links.

¢ Implement the possibility to schedule an event to be published on a specific date and
time.

¢ Implement the possibility for reoccurring food distribution events to be auto-created one
month prior.

Results and Insights from Volunteer/Customer test:

The tester expressed overall satisfaction with the product and its design. He explained that
the system was easy and efficient to use, and expressed enthusiasm related to some of the
features, such as the ability to edit/cancel your booking. He believed that this would be very
helpful for both the customers, but also the volunteers. The test also discovered some new
bugs and notes for future work.

Discovered bugs:

* Wrong error message: ‘unexpected error’ if you try to log in without confirming your
email first.

* Does not save phone number when signing up
Future work:

¢ Having 'volunteer pages’, the same way as there are ‘admin pages’. Could be used by
volunteers and admins to handle scheduling etc.

* Sending notification email on the day or the day before a customer has a booked event.
* Better formatting of the event description, so it is more readable.

* The Reservation page could benefit from being step-by-step with auto navigate to the
next step (displays less information at the same time).

67

5.6 Sprint 4

5.6.1 Sprint Planning

The main goal of this final sprint is to implement some of the easier low-risk items based on
user feedback gathered during user tests and to perform an overall clean-up of the product.

5.6.2 Frontend items
* S4F1: User test fixes and small text and layout updates[H.0.7]
* S54F2: Configuration fix to not expose source code in the browser
* S54F3: More mobile compatibility

o S4F4: Different receiver of email than logged-in user

5.6.3 S4F3: More mobile compatibility

When testing the app on actual phones, it was discovered that not all screens were not scaling
properly on phones. The reason for this is that while testing mobile compatibility, the screen
it was tested on was 500px wide, while phones can be down to 320px wide. Therefore, there

were made some changes to ensure the website is accessible for different mobile screens.

You will get a box of 7-10 kg, full of fruits, veggies,
bread and other good stuff. The boxes are made
with food surplus & food waste donated by
supermarkets, so some of it might be overripe,
wilted or a bit bruised. We encourage you to give
it some care and a light trimming & save what is
still edible. No food should go to waste unless it is
rotten

PLEASE ONLY BOOK IF YOU KNOW YOU CAN
COME! IF YOU DON'T COME, YOUR BOX GOES
TO WASTE. In order to save the waste, we will
keep your booking for 10-15 minutes, after that
the food will be given to other people. If you know
you would be late for picking up your box, please
contact us in advance via Facebook (Madboks) or
Instagram (madbeks_kbh). Thank you!

Bring your own bags - one for fruit & veggies and
one for bread.

WHAT TO EXPECT

Our boxes are made with food surplus & food
waste donated by supermarkets, so some of it
might be overripe, wilted, or a bit bruised, all of
which are still perfectly edible. We encourage you
to give it some care and a light rimming & save

13022537128 &

< > 0 m O

AA Ikke sikker

Madboks food
distrubution 9/12

Fri Dec 13, 16:00 - 17:00
Kapelvej 44, 2200 Kebenhavn N
Description:

Bring your own bags - one for fruit & veggies
and one for bread.

PLEASE ONLY BOOK IF YOU KNOW YOU CAN
COME! IF YOU DON'T COME, YOUR BOX
GOES TO WASTE.

You will get a box of 7-10 kg, full of fruits,
veggies, bread and other good stuff. The boxes
are made with food surplus & food waste

donated by su... Aead Moy

Kke sikker — 130.226.37128

New food distribution event
Title

Sundholmsvej 28A

Address

Sundholmsvej 28A, 2300 Kebenhavn S
From: 15.00

To: 16.30

Date
15. dec. 2024

Number of boxes

100

Description

Bring your own bags - one for fruit & veggies
and one for bread.

AA ke sikker —130.225.37.128 ¢

< (0} m

New food distribution event
Title

Kapelvej 44

Address

Kapelve] 44, 2200 Kebenhavn N
From: 16.00

To: 17.00

Date

18. dec. 2024
Number of boxes
20

Description

Bring your own bags - one for fruit & veggies
and one for bread

BI EASE ANIV RANK IE VA T KNOW YO | 4N
aA Ikke sikke

< t m D

13022637128 ¢

Figure 5.21: Screens explained from left to right: 1) Event info pop-up before changes. 2) Event info pop-up after
changes. 3) Create event pop-up before changes. 4) Create event after changes.

68

Show More

Scheduled Events

Kapelvej 44
Wed Dec 11 2024

16:00 - 17:00

All Locations

(o)

A lkke sikker — 130.225.37128

< 0

m

Scheduled Events

Kapelvej 44 oooo
Sat Dec 14 2024

16:00 - 17:00

All Locations

@)

Ikke sikker —130.225.37.128

Create new location
Create new location °
Street address
Street address
Apartment, suite, etc.
Apartment, suite, etc.
Zip code
Zip code
City
City
Country
Denmark Country
Denmark
Default number of boxes
100 Default number of boxes
100
AA lkke sikker —130.22537128 ¢ A Ikke sikker —130.225.37.128 [
< 0] m b < (u) m

Figure 5.22: Screens explained from left to right: 1) Admin upcoming event display before changes. 2) Admin
upcoming event display after changes. 3) Create location pop-up before changes. 4) Create location after changes.

54

Your Bookings

Sundholmsvej
28A

8.12.2024, 15:00 -
16:30

Your timeslot:
16:10 - 16:20

new 222
20.12.2024,
17:30 -
18:30

Edit

Edit

Cancel

Your Cancel

timeslot:

aA lkke sikker —130.225.37.128

< th

m

Your Bookings

Sundholmsvej 28A
8.12.2024, 15:00 - 16:30
Your timeslot: 16:10 - 16:20

Edit Cancel

Sundholmsvej 28A
8.12.2024, 16:00 - 15:30
Your timeslot: 17:00 - 17:10

Edit Cancel

Show More

Ikke sikker —130.225.37.128

0 M

Sign Up Sign up

First Name
First Name

Last Name
Last Name

Email

Phone Number
Phone Number
Password

Password

Confirm Password

Gonfirm Password
Background

Choose background

Background
Choose background

Already have an account? Logir

Already have an account?

AA Ikke sikker —130.225.37.128 © AA kke sikker —130.225.37.128 e

O s fh m b < L A

Figure 5.23: Screens explained from left to right: 1) Your bookings display before changes. 2) Your bookings display
after changes. 3) Sign-up pop-up before changes. 4) Sign-up location after changes.

69

5.6.4 S4F4: Email updates

The email template was updated so that it also takes the name of the customer and the booked
timeslot as a parameter. These parameters are then used in the email template to create per-
sonalised email confirmations see figure

In addition, as wanted by the product owner in the user test feedback, the email is sent out
to the email that is used in the contact form (also if it differs from the email of the logged-in
user), so it is possible to book for other people (e.g. if someone is booking for their parents
that are not very technical).

o madboks.noreply@8359626.brevosend.com Unsubscribe 3:42PM (0 minutes ago) Yy “
. tome v

Thank You for Your Order, Sofia! &

We’re preparing your order and can’t wait for you to pick it up. Please remember
to collect your items at the specified time: 16:40 - 16:50.

If you have any questions or need further assistance, feel free to reach out to us
at help@madboks.com.

Your support means the world to us, and we look forward to serving you again
soon!

Love, Madboks @

Figure 5.24: New confirmation email

5.6.5 Sprint Review

The primary goal of this sprint was to implement some low-risk items mostly based on feed-
back from user tests. This was successfully done, and a final meeting was held with the
product owner to give a rundown on the final iteration of the product. Other than that, a
general clean-up of the code was done.

70

Chapter 6

Quality Assurance

To ensure acceptable code quality, a pre-planned quality assurance process was followed. Unit
tests were used to validate individual components, structured pull requests and a review
process had to be followed upon code merges, and user testing was applied to gather feedback
on the overall user experience. The main goal was to identify potential issues early in the
development cycle and to avoid pushing faulty code by running tests and linting in GitHub
actions.

6.1 Unit tests

Unit testing is a fundamental part of the quality assurance process, focusing on the verification
of individual components or functions of the application. The tests are designed to ensure that
each unit of code performs as expected in isolation, without dependencies on other parts of
the system. Unit tests were implemented in this project to validate the core functionalities of
key modules, ensuring the robustness and reliability of the underlying logic. The tests were
automated in a CI pipeline using GitHub Actions.

In the backend, unit tests were created for all endpoints related to the database tables: events,
locations, timeslots, reservations and auth.

6.2 User Tests

A key focus of the project was enhancing the user experience. To achieve this, regular accep-
tance testing with the product owner and user testing with individuals unfamiliar with the
product were essential steps.

Three semi-structured user tests with people from the Madboks organisation were conducted.
The user tests were conducted to identify the usability of the website and identify bugs and

71

missing functionality. It is important to note that usability is not a single property of a user
interface but has many different components [10].

Jakob Nielsen, Danish computer scientist and UX expert, describes in his book "Usability
Engineering", that he associates the definition of usability with these five usability attributes
[10].

¢ Learnability: The system should be easy to learn so that the user can rapidly start getting
some work done with the system.

¢ Efficiency: The system should be efficient to use, so that once the user has learned the
system, a high level of productivity is possible.

* Memorability: The system should be easy to remember, so that the casual user is able
to return to the system after some period of not having used it, without having to learn
everything all over again.

* Errors: The system should have a low error rate, so that users make few errors during
the use of the system, and so that if they do make errors they can easily recover from
them. Further, catastrophic errors must not occur.

¢ Satisfaction: The system should be pleasant to use, so that users are subjectively satisfied
when using it; they like it.

The usability attributes defined by Nielsen [10], were used in the user tests for evaluation.

On the 4th of December, the Product Owner, a Madboks admin and a Madboks volunteer
conducted the user test. This type of user test was a great tool for discovering bugs, missing
functionality and ideas for future work. Involving the product owner in the testing is essential,
as the product owner is the one who has the final say in how the platform should look and
what functionalities it should provide, from the business perspective. This criteria is defined
in this project as business acceptance criteria. Therefore, the tests also ensured that the product
meets the business acceptance criteria.

6.2.0.1 Product owner and admin tests

The tests by the Product owner and Madboks admin focused on evaluating the website’s ability
to meet the organisation’s needs. The objective was to ensure the system effectively supports
efficient event management and reservation tracking. In addition, it ensured that the customer
side of the website met all business acceptance criteria.
Test methodology:
1. Scenario Setup: The admin was asked to perform tasks related to Madboks’ operations:
¢ Login
¢ Creating, modifying, and deleting events.

¢ Creating, modifying, and deleting locations.

72

* Managing active events
¢ Exploring the rest of the website to ensure it meets the business acceptance criteria

2. Observation: During the test, the present developers observed user interactions to iden-
tify potential challenges, confusion, or areas requiring improvement. The testers also
commented while performing the test.

3. Feedback Collection: After the tasks, the tester participated in a semi-structured in-
terview to provide feedback on the system’s utility, efficiency, and areas for potential
enhancement. The testers got the opportunity to voice their thoughts and findings, fol-
lowed by questions and clarifications by the developers.

6.2.0.2 Volunteer/customer tests

The tests by the Madboks volunteer focused on evaluating the website’s ability to meet the
needs from both a customer’s perspective and from the perspective of someone who is con-
tributing to the management of the events (as a volunteer). The objective was to ensure the
system effectively supports the booking of boxes and cancellation/editing of their booking. In
addition, the user interface was evaluated, such as the log-in/sign-in process, the home page
and the events page.

Test methodology:

1. Scenario Setup: The volunteer was asked to conduct tasks related to the customer’s
behaviour:

¢ Inspect the home page

e Create a reservation without a user
* Sign up

e Create a reservation with a user

¢ Edit your reservation

* Sign up as a volunteer

* Explore the website

2. Observation: During the test, the present developers observed user interactions to iden-
tify potential challenges, confusion, or areas requiring improvement. The testers also
commented while performing the test.

3. Feedback Collection: After the tasks, the tester participated in a semi-structured in-
terview to provide feedback on the system’s utility, efficiency, and areas for potential
enhancement. The testers got the opportunity to voice their thoughts and findings, fol-
lowed by questions and clarifications by the developers.

73

The user tests conducted with the Product Owner, the Madboks admin, and the volunteer
proved invaluable in refining the platform and aligning it with both business and user expec-
tations. These tests identified critical usability issues, bugs, and missing functionalities early,
allowing the team to address them before the final deployment. Moreover, the active involve-
ment of the product owner ensured the platform met the business acceptance criteria, while
the volunteer tests provided insights into real-world user scenarios and highlighted areas for
improving the customer experience.

74

Chapter 7

Overview of the final product

The end product of this project is essentially a website for creating and managing events on the
admin side, and booking boxes and managing bookings on the customer side - supported by
features such as live previews, template creation, and keeping track of relevant information in
real-time. The website fetches event and customer data from a Supabase database sends emails
using a third-party SMTP server, and ensures security with Cloudflare’s Captcha turnstile. The
following is a brief breakdown of the implemented features of the end product. Below this is
a walk-through with more elaboration.

* Homepage redirecting customers to reservation, volunteer signup and communicating
Madboks” main mission goals

* Volunteer signup page hooked up to email service

* Reservation page hooked up to a database and email service

¢ About us page

¢ Personal profiles for easier booking and overview for bookings
¢ Cancellation and booking edits

¢ Location template management for admins

¢ Event creation and management for admins

¢ Event overview and edits for admins

e Frictionless CAPTCHA (Cloudflare Turnstile; no need for manual puzzle solving as it
runs in the background) to avoid form/login spam and bots

* Mobile compatibility (responsiveness)

* Supabase database storing all user and event data

75

The website’s key functionalities on the customer side include booking food boxes, creating
accounts to manage or cancel said bookings, discovering future events and their details, and
having the opportunity to participate in volunteering and learn about Madboks and its mis-
sion goals. The website is usable with or without customer logins.

On the admin side, events can be created/edited/deleted with the help of a live preview
and template selector, said location templates can be created/edited/deleted to streamline the
event creation process, and relevant information regarding events such as number of boxes left
etc. is available as a part on an admin dashboard. During the event creation and editing pro-
cess, several Madboks-specific solutions support their unique processes, such as the automatic
distribution of boxes across collection timeslots and a donation selector to provide an estimate
of potential earnings etc.

On the frontend side, the website is highly responsive, being fully compatible with both com-
puter and phone screens. Implementing unique Tailwind styling for diverse screen sizes, the
development team ensured that all components and pages were rendered correctly on all plat-
forms. For instance, the top bar becomes a burger menu, and the home screen displays images
and text vertically while keeping its snappy behaviour between sections.

To account for scalability in the website’s email service, Brevo’s SMTP server was selected.
Its flexible pricing allows Madboks to only pay for what the organization needs, and its qual-
ity service ensures that emails consistently reach recipients’” inboxes on time without being
flagged as spam.

Cloudflare Captcha further supports the potential scalability of the product - Turnstile is engi-
neered to be lightweight, ensuring minimal impact on page load times. It typically adds less
than 100 milliseconds to loading, significantly less than Google reCAPTCHA, which can add
200-500 milliseconds due to its heavier scripts [1]. Even more importantly, Turnstile does not
require solving puzzles - it analyses behavioural signals instead, ensuring zero user friction.
The quality and reliability of Cloudflare’s Turnstile Captcha in the context of websites with
massive user bases is further confirmed by its popularity, for instance, OpenAl, Shopify, and
GitLab [18].

The database selected for this project, Supabase, is a scalable database solution because it’s
built on PostgreSQL, a database solution that supports large datasets and concurrent queries.
It offers serverless APIs to handle high traffic efficiently. Supabase also includes real-time data
updates, storage for structured data, and access control with Row-Level Security. Its global
deployment options ensure low latency, while its pay-as-you-go model makes it cost-effective
for scaling. Additionally, it supports extensibility with PostgreSQL functions and integrations
for continuous improvement [14].

76

Home Reservation Events \Volunteer ~News About

Help
reduce food
waste,

Help reduce food waste,
secure your

secure your food box

food box
today!

today!
=

—13022637128 &

Figure 7.1: Homepage 1

Figure 7.2: Homepage 1
mobile

Madboks
<]
-

Becomea ' .
Volunteer »

Madboks
ol]

-

Becomea '/
Volunteer

Volunteer!

Positions 3
Available)
* Foogcotectors olunt

Sortors & pockors

© Ikke sikker —130.226.37128 ¢

Figure 7.3: Homepage 1

Figure 7.4: Homepage 2
mobile

77

seKs Qur Locations

Reservation Events Volunteer News About

Our Locations

Sundholmsvej Kapelvej 44
28a 2200, Kobenhavn N
2300, Kobenhavn S

=

Sundholmsvej 28a Kapelvej 44 Urmagerstien 28

2300, Kobenhavn § 2200, Kobenhavn N 2300, Kobenhavn §

Urmagerstien 28
2300, Kobenhavn S

Swipe down to see more
v

Figure 7.5: Homepage 3

Figure 7.6: Homepage 3
mobile

8

13022637128 &

Figure 7.7: Homepage 4

Figure 7.8: Homepage 4
mobile

78

Y

o @D

Kapelvej 44, 2200

Kobenhavn N

Home Reservation Events Volunteer News About
Book your Madboks
Select an event
Sundholmsvej 284, 2300 Sundholmsvej 284, 2300 Kapelvej 44, 2200 Kapelvej 44, 2200
Kobenhavn S Kobenhawn S Kobenhavn N Kobenhavn N
Sun Dec 08, 16:00 - 15:30 Sun Dec 08, 15:00 - 16:30 Wed Dec 11, 15:00 - 16:00 Th Dec 12, 16:00 - 17:00
Info before you book
' nd v o
How many boxes would you like to book? = 1 &
Ghoose time for pickup |
Choose your donation |
25 DKK 50 DKK 75 DKK
Minimum donation Medium donation Large donation
Covers food transport Covers all event logistics. Helps organise future events

Contact infa

Figure 7.9: Reservation page

s ome
BOKS

Upcoming Events

Sundholmsvej 28A Sundholmsvej 28A
Sun Dec 08 2024 Sun Dec 08 2024
16:00 - 15:30 15:00 - 16:30

Figure 7.11: Events page

Reservation Events \Volunteer News

Kapelvej 44 Kapelvej 44

Wed Dec 112024 Thu Dec 12 2024
15:00 - 16:00 16:00 - 17:00

About

Fri Dec 132024

16:00 - 17:00

Madboks food dis...

Fri Dec 13, 16:00 - 17:00

Kapelvej 44
Wed Dec 18 2024

16:00 - 17:00

Book your Madboks

Select an event

Sundholmsvej 28A, 2300
Kobenhavn S
Sun Dec 08, 16:00 - 15:30

Show More

Info before you book

1 understand and | willry to save as much food as

possible from going to waste!

How many boxes would
you like to book?
Choose time for pickup (i

Choose your donation (i

Ikke sikker —130.225.37.128

¢

Figure 7.10: Reservation

page mobile

Your Bookings

Sundholmsvej 28A

8.12.2024, 15:00 - 16:30

Your timeslot: 16:10 - 16:20
Edit Cancel

Sundholmsvej 28A
8.12.2024, 16:00 - 15:30
Your timeslot: 17:00 - 17:10

Edit Cancel

‘Show More
Upcoming Events

or —130.226.37.128

Figure 7.12: Events page
mobile

¢

79

ﬁ Dashboard
BOKS

Active events

Sundholmsvej 28A
Sun Dec 08, 16:00 - 15:30

Available Boxes: 94
Total Boxes: 100

Sundholmsvej 28A
Sun Dec 08, 15:00 - 16:30

Available Boxes: 90
Total Boxes: 100

Scheduled Events

Figure 7.13: Events admin page

Locations ~ Volunteer Events

‘Show More

<+ Create new eve

-
==

Active events

Sundholmsvej 28A
Sun Dec 08, 16:00 - 15:30

Available Boxes: 94
Total Boxes: 100

Edit Cancel

Sundholmsvej 28A
Sun Dec 08, 15:00 - 16:30

Available Boxes: 90
Total Boxes: 100

Edit Cancel

—13022637128 &

Figure 7.14: Events admin
page mobile

80

Chapter 8

Discussion

With the completion of the Madboks system, there is still room to refine and expand the
system’s functionalities to further support the organisation’s goals. This discussion reflects
on the development process, and areas for future improvements, including pending PBIs and
security considerations and discusses the system’s scalability and sustainability by reducing
resource waste.

8.1 Process

8.1.1 Reflections on the development process

The Agile-adjacent workflow of this project worked well for supporting transparency and con-
tinuous value delivery. The bi-weekly sprint review meetings with the product owner served
as a good place to discuss where the project was headed at that specific point in time and to
ensure a good common understanding across the roles. Other than that, having to present an
increment at the end of each sprint naturally applied some pressure on the developers to keep
working to avoid disappointment. Working face-to-face with the product owner also put more
emphasis on the importance of taking feedback, translating feedback into usable user stories
or PBIs, and implementing the resulting items.

The product owner of this project, Roxana Zlate, showed a lot of engagement throughout
the entire project period and did a great job of voicing stakeholder concerns and representing
user needs. The latter, for instance, is confirmed by the user test conducted at the end of sprint
3 Feedback was clear and concise, and transparency was kept from both the developer
and product owner side with the help of frequent communication.

The development team’s workflow and the generated value were acceptable, but in hindsight,
there are a couple of things the team would have done differently. First, it would have made

81

sense to give everyone time to familiarise themselves with the setup of different components
rather than a single member taking responsibility for it. The lack of transparency regarding
this part of the development operations resulted in items being "delivered" but not guaranteed
to be working in production and also made it difficult for other team members to help with
the production issues.

Continuing on internal processes, laying plans out for solving challenges and/or engaging
in pair programming when addressing larger items could have aided in a more well-rounded
team with a general understanding of a larger chunk of the product rather than every member
specialising in their specific product backlog items. On the other hand, this could have slowed
down the delivery process.

Github’s Projects and Issues tools were utilised according to plans - although spending some
more time documenting issues could have helped in the documentation and report-writing
following sprints. Overall, Github as a version-control tool and its extra features were good at
aiding the team’s feature-branch structure.

8.2 The product owner’s reflections on the development pro-
cess

The feedback from the product owner, Roxana Zlate, has been overwhelmingly positive, re-
flecting satisfaction with the project’s progress and outcomes. Overall, they expressed that
they were very happy with the work done and the direction of the project. The frequency of
meetings was appreciated, with the product owner noting that the current schedule was effec-
tive. However, they suggested that increased online communication and collaboration between
meetings could further optimise the process by addressing issues as they arise.

The meeting format was praised as being well-structured and productive. Zlate also high-
lighted that her input was consistently considered and effectively incorporated into the project.
This level of involvement contributed to her satisfaction with the outcome, which she described
as excellent. The full written feedback can be found in Appendix

8.3 How QA could have been improved

A major point of concern for the developers at the end of the project was the lack of suffi-
cient testing required for a scalable web application. The most crucial improvements were
recognised to be the lack of integration testing, frontend unit tests, load tests and static code
analysis.

82

8.3.1 Integration testing

Arguably the most important missing element of this project is integration testing. Integra-
tion testing evaluates the interactions between multiple components to verify that they work
together as intended. Unlike unit tests, which assess isolated functions, integration tests ex-
amine how well different modules or systems communicate and operate as a cohesive whole.
This is particularly important for identifying issues related to data flow, API calls, or depen-
dencies between modules. In this project, integration tests could have been conducted to, for
instance, validate communication between the frontend, backend, and database, ensuring that
all layers of the system work as intended. These tests would have been important to confirm
the stability and reliability of the application in its entirety.

8.3.2 Load tests

Load tests are a type of performance testing used to evaluate how a system behaves under a
specific workload. They simulate a variety of user activities, such as making requests, submit-
ting forms, or performing database queries, to measure the system’s responsiveness, stability,
and scalability. The goal is to determine how well the system handles expected and peak traffic
levels, identifying bottlenecks and potential failures before they impact real users [11].

Although Madboks is not expected to undergo a massive increase in the number of users
anytime soon, a couple of hundred visits a day is still something that the current system may
not be able to handle gracefully.

Although there is no data that supports this, it is safe to assume that Madboks” number of
daily visitors is not evenly distributed - high traffic is a lot more likely after publishing events.
If registered users are notified about new events, it is almost guaranteed.

Submitting forms, sending emails, and API requests are central to the system, so conduct-
ing load tests would make perfect sense to find out how many concurrent visitors or requests
the website can handle before crashing under the load. Also, a load test would be useful to
uncover bottlenecks.

One such tool that seems like a reasonable choice for this purpose is k6, a load-testing tool
designed for APIs and microservices [7]. According to its documentation, its integration in a
CI/CD pipeline is also supported, and it integrates well with Fastify RESTful endpoints.

8.3.3 Unit tests on the frontend side

As for unit tests, although not including a lot of complicated logic and error-prone compo-
nents, it would have been good practice to write tests for the frontend as well. Specifically,
testing Axios would ensure that the frontend is correctly communicating with your backend
or third-party APIs.

83

8.3.4 Static code analysis (CodeScene)

For improved quality assurance and evaluation, the team could have utilised the CodeScene
static code analysis tool throughout the project to continuously evaluate code health and recog-
nise problematic areas [4]. Although CodeScene is very simple, checking for overly nested
code, dead code and repetition, it would have been good practice to ensure an extra check for
code health, and to be able to put a metric on code quality. CodeScene also has an extension
to provide warnings during the development process which could have been useful.

8.4 Future work

As of the writing of this report, there are still some known issues that should receive first
priority to fix if the team had another sprint to work on the code. Namely, these are resolving
issues with the authentication service, and deploying the already partially implemented form
validation.

The authentication issue arises because the application saves a session when a user logs in
and retrieves the same session upon revisiting the site, without verifying that the session be-
longs to the user. This happens due to a lack of authentication using site cookies with access
and refresh tokens. To resolve this, the application should use the access tokens stored in
these cookies to verify the user’s identity before retrieving the session, enabling automatic and
secure login.

Proper form validation for admins, should be in place to minimise the risk of unwanted be-
haviour. In addition, implementing input validation of all fields accessible on the website is
an important measure to protect against input that could overload the server, or send bogus
requests and malicious code. Also, having a Privacy Policy that the users have to agree on, be-
fore creating an account and making a booking, is important to implement before the website
is ready to be used by real customers.

With the approximate 3-month window of the project, the development team needed to pri-
oritise features to be implemented. The following list encapsulates features and enhancements
that could be interesting for future work.

¢ Allow users without accounts to cancel or edit bookings through a link

¢ Implement a waiting list for sold-out events

¢ Enable scheduling of events and auto-create events one month in advance

¢ Connect the volunteer sign-up page with the current email service for volunteers

¢ Add validation to prevent creating two events with the same location, date, and time

¢ Email service enhancement - Send email notifications the day before or on the day of an
event

84

¢ Email service enhancement - Send cancellation emails if an admin cancels an event
¢ Fully implement the ability to create "other events"
* News forum where admins can post announcements

Cancellation is, in general, a very important thing for the product owner, because if a customer
does not cancel, then a foodbox goes to waste, literally counteracting Madboks” entire mission
goal. Currently, if a customer is not registered, then can place orders, but have to reach out
to Madboks through Facebook to cancel their booking. This is not an ideal solution. A way
to tackle this could be to generate a specific link where non-registered users can manage their
bookings without explicitly logging in. This could be done with a secret link - generally a
pretty popular solution. Links are shared and it could pose potential vulnerabilities, but the
overall risk is still pretty low.

The email service enhancements would require some work because they require exploring
new tools and architectural patterns. For instance, when having to send emails out a day
or two before an event, an event-driven architecture and a scheduler-worker pattern would
be something the development team would have to look into. Systems such as this are built
around events like "event created," "event updated," or "time to send reminder", triggering
messaging systems or other actions. The database for event data is already in place, and Su-
pabase does have a built-in scheduler, CRON job, periodically checking for events happening
in the next 24 hours. With the help of a queue managed by said scheduler, the worker should
then be able to dequeue and use the already implemented SMTP server to send emails out.
Enabling the scheduling of events and auto-create events one month in advance would require
very similar architecture and design patterns.

The waiting list is a useful addition that would allow users to sign up for events that are
already at full capacity. By creating a waiting list, users have a way of registering their interest
for a specific event. If someone cancels their reservation, the next person on the waiting list
will be notified and offered the opportunity to reserve the box. This would help ensure that
every available spot is filled, preventing food from going to waste. In terms of implementing
this, it would require integrating the registration system with a dynamic notification system,
that would automatically track cancelled events and notify waiting list users. Arguably, it is
also somewhat similar to the previously described scheduler-worker pattern, because it would
also have to work with triggers.

8.4.1 Security

To ensure the Madboks platform is ready for full deployment to all users, several additional
security measures should be implemented as part of future work:

¢ Secure Domain and HTTPS: Host the website on a secure domain using HTTPS and
TLS certificates to encrypt all data in transit, ensuring secure communication between
users and the platform.

85

e Endpoint Authorisation: Introduce authorisation mechanisms for all API endpoints to
prevent unauthorised access to user data. For instance, only authenticated users should
be able to access or modify their own bookings.

¢ Input Validation: Implement input validation across all form fields on the website to
protect against malicious inputs, such as SQL injections or payloads designed to overload
the server like it is done with email and phone number fields.

* Role-Based Access Control (RBAC): Expand the RBAC system to ensure that only au-
thorised roles (e.g., admins) can access sensitive features like event creation, modification,
or deletion.

* Privacy Policy Agreement: Require users to agree to a Privacy Policy before creating an
account or making a booking, ensuring compliance with data protection regulations and
increasing user trust.

These measures will significantly enhance the security of the platform, protecting sensitive
user information and preventing malicious attacks.

8.4.2 Expanded User Testing

While the system meets the core requirements defined during development, the system could
greatly benefit from more extensive user testing. The user tests conducted so far have provided
valuable feedback but have been limited in scope, primarily focusing on core functionalities
and involving people from the Madboks organisation. The system would benefit from hav-
ing user tests that involve both recurring and new customers. Recurring customers could
offer more insights into improving features they frequently use, and ensuring that no prior
functionality is lost in the new system. Involving new customers would give insight into the
usability of the website when the user has no prior knowledge of Madboks. It could identify
challenges and highlight areas where the platform can be more intuitive for first-time users.
Working with more user tests could give more insight into user behaviour and potential bugs,
enhancing both usability and user satisfaction and allowing the team to refine features based
on detailed user feedback.

In addition, these user tests could benefit from being more structured than the one conducted
with the Madboks employees. One way to structure this is to ask the participants the same
set of questions after the test, to consistently gain insight into their perception and experience.
The questions could be based on the usability attributes defined by Nielsen [10], presented
in the Quality Assurance chapter The participants could answer each question using a
Likert scale ranging from 1 to 5, with 1 being the worst rating (Strongly disagree), 5 being
the best rating (Strongly agree), and 3 being the neutral [10]. Using this scale helps to un-
derstand the users’ perceptions and experiences, and makes it easier to compare and analyse
the data collected from the conducted user study. Using questions related to the usability
attributes ensures that the application is intuitive and effective and provides a satisfying user
experience.

86

8.5 Scalability

During the design phase of this project, most third-party tools and software architecture/design
patterns implemented were selected with scalability in mind. The layered and tiered design
pattern chosen promotes the separation of concerns inside the system and enables horizontal
scaling independently for each layer when addressing potential bottlenecks — adding more
machines/nodes to the system.

One major point of improvement in the system in terms of scalability would be to restructure
the backend services so they do not operate using a singleton pattern. A singleton instance
means there’s only one service handling all requests. If that instance fails, the entire function-
ality becomes unavailable. Also, a singleton instance has limited capacity to handle concurrent
requests. As the load increases, it can quickly become a bottleneck.

As Madboks evolves, its architecture could transition to a micro-services-based approach,
where each service (e.g. user authentication, event reservation, notification) runs in its own
container. Docker makes it easy to adopt such a structure.

8.6 Sustainability

By reducing the manual administrative tasks, the volunteers can focus their efforts on scaling
operations and improving event quality, ultimately amplifying the organisation’s impact.

Concerning the SDGs, the project aligns in the following ways:

® SDG 2: Zero Hunger
The project tackles food insecurity by redistributing surplus food efficiently to individ-
uals who need it. By enhancing the logistics of food donation events, we ensure that
surplus food reaches people who need it rather than being wasted. With the improved ac-
cessibility and user-friendly interface it is easier for individuals to access food resources.

* SDG 11: Sustainable Cities and Communities

The project contributes to building sustainable communities by improving the logistics
and accessibility of food donation events. By creating a more efficient digital solution,
we can reduce the burden of manual coordination on administrators and volunteers,
fostering a more sustainable operation.

The project fosters community cohesion by bringing together donors, volunteers, and
people through a centralised platform. It promotes the distribution of food resources to
groups who need it, contributing to more sustainable communities.

¢ SDG 12.3: Global Food Loss and Waste
The project promotes sustainable consumption and production by reducing food waste
through redistribution. The system ensures that surplus food isn’t wasted, but rather
distributed efficiently, reducing unnecessary food waste.

87

By implementing features such as better management, a more centralized booking sys-
tem and automated notifications, the platform ensures that food is distributed to those
in need without excess wastage.

By addressing these SDGs through an optimised digital solution, the Madboks platform sup-
ports its organisational mission and also shows how localised efforts can contribute to achiev-
ing global sustainability goals by reducing environmental waste, fostering stronger communi-
ties, and ensuring fair access to resources.

88

Chapter 9

Conclusion

This project addresses a critical social and environmental issue—food waste through the de-
velopment of a web application for the non-profit organisation Madboks. The collaboration
aimed to replace their fragmented, manual processes with a unified booking and event man-
agement platform to enhance efficiency, scalability, and user experience.

This report documented every phase of the project, including analysis, design, implemen-
tation, testing, evaluation, and the authors’ reflection. The project successfully delivered a
functional web application that centralises Madboks’ operations, focusing on reservations,
event management, and communication.

Key developments included replacing manual tools like Google Forms and Excel with au-
tomated reservation and event management systems to reduce administrative overhead and
inefficiencies, incorporating user-centered design principles inspired by platforms such as Too
Good To Go and Facebook to create intuitive interfaces for customers, admins, and volunteers,
and implementing somewhat scalable software architecture and DevOps practices—including
CI/CD pipelines and scalable hosting solutions—to support Madboks’ growing user base and
feature set.

Additionally, the project integrated features like Cloudflare Turnstile CAPTCHA and Su-
pabase authentication to ensure data security and accessibility, while aligning the platform’s
goals with the UN’s Sustainable Development Goals (SDGs), particularly those related to zero
hunger, responsible consumption, and sustainable communities.

Reflecting on the problem statement — "How can food waste among Danish retail stores
be minimised by developing a new localised, web-based platform for Madboks that enables
them to create and manage events for distributing near-expiry food items and allows users
to conveniently book them?" — it is clear that the project addressed many of its key com-
ponents. The developed platform provides a solution for event creation and management,

89

offering users a convenient way to book near-expiry food items. Operational bottlenecks were
reduced through automation, and the focus on user-centered design enhanced the platform’s
accessibility and usability for all stakeholders.

However, the fulfilment of the problem statement’s ultimate goal—minimising food waste—is
inherently challenging to measure accurately in the short term. While the platform intro-
duces mechanisms to support food distribution, its success in reducing food waste depends
on adoption rates, user engagement, and the extent to which Madboks and their partners can
consistently prevent surplus food from being discarded. Quantitative evaluation metrics, such
as tracking the volume of food saved from waste and the number of users served, require
long-term data collection and analysis. Furthermore, external factors such as partnerships
with retailers, user behaviour, and logistical constraints also influence the platform’s impact,
making it difficult to isolate and attribute success solely to the new system.

While the project met many of its core objectives, there is still room for improvement. The
Product Owner expressed interest in features such as waiting lists for sold-out events, notifica-
tions on the day of events, cancellations without login, support for another event types, news
posts, and scheduling or auto-creation of food distribution events. Future work could also in-
clude integrating payment systems, advanced volunteer management tools, and mobile appli-
cation support to further streamline operations and improve user convenience. Implementing
analytics to track the platform’s impact on food waste reduction and user engagement over
time would provide more concrete insights into its effectiveness.

By enhancing operational efficiency with a web application and supporting Madboks’ broader
vision of sustainability, this solution lays a potential foundation for reducing food waste and
promoting responsible consumption. With further development and sustained effort, the plat-
form could evolve into a powerful tool for advancing both organisational goals and societal
change.

90

Appendix A

Screenshots

B
8

Today from 15:00-16:30

Madboks food distribution 8/12 - Sundholmsvej 28a

Maskinhallen

About Discussion 7Y Interested © Going X Invite »

Details
o0 Nase @
@» 14 people responded ADE H

4 %, :
& Event by Madboks & 0&/0(

& s,

o <,
<
i Q

© Maskinhallen
° Duration: 1 hr 30 min
@ Public - Anyone on or off Facebook

Every Sunday, Madboks volunteers get together to save food from going to waste
and raise awareness of this massive issue in our society. You can find us at
Sundholmsvej 28a and you can join us to collect some food for yourself and/or

Figure A.1: Layout of how it looks when you click on an Madboks event on Facebook from the computer

91

Box Reservations for Madboks Sundholmsvej
28a - Food Distribution 8/r2

How to reserve a box of food:
1. Fillin this form & choose a time slot for your box pick-up.

2. Check your email for a copy of your responses.

Reservations are considered automatically confirmed once you receive an email with a copy of

your responses once you complete filling in this form.

You will get a box of 7-10 kg, full of fruits, veggies, bread and other good stuff. The boxes are
made with food surplus & food waste donated by supermarkets, so some of it might be a
overripe, wilted or a bit bruised. We encourage you to give it some care and a light trimming &
save what s still edible. No food should go to waste unless is rotten.

PLEASE ONLY BOOK IF YOU KNOW YOU CAN COME! IF YOU DON'T COME,
YOUR BOX GOES TO WASTE. In order to save the waste, we will keep your booking for 10-
15 minutes, after that the food will be given to other people. If you know you would be late for
picking up your box, please contact us in advance via Facebook (Madboks) or Instagram
(madboks_kbh). Thank you!

Bring your own bags - onc for fruit & veggics and one for bread.

Time & place:

Figure A.2: Layout of how the google forms layout look like when you open from a computer

92

20

21

22

23

24

25

26

Appendix B

Pipelines

B.1 CI pipeline web

// CI pipeline for web
name: CI

Trigger the workflow on push or pull requests to the main or dev branches

on:
pull_request:
branches:
- main
- preprod
- dev

jobs:

eslint:

runs-on: ubuntu-latest

steps:

Check out the code from the repository

- name: Checkout code

uses: actions/checkout@v3

Set up Node.js

- name: Set up Node.js
uses: actions/setup-node@v3

with:
node-version:

1991

93

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Install dependencies
- name: Install dependencies
run: npm install

Run ESLint to check for linting errors
- name: Run ESLint
run: npm run lint

test:
runs-on: ubuntu-latest
needs: eslint
steps:

Check out the code from the repository
- name: Checkout code
uses: actions/checkout@v3

Set up Node. js
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '22'

Install dependencies
- name: Install dependencies
run: npm install

Run Jest tests
- name: Run Jest tests
run: npm test

build:
runs-on: ubuntu-latest
needs: test
steps:
- name: Checkout Code
uses: actions/checkout@v2

- name: Set up Node.js
uses: actions/setup-node@v2
with:
node-version: '22'

- name: Install Dependencies
run: npm install

94

74

75

76

77

78

79

- name: Build Project

env:

REACT_APP_BACKEND_URL: ${{ secrets.BACKEND_URL }}
CI: false # Disable treating warnings as errors

run: npm run build

B.2 CI/CD pipeline web -preprod

// CI/CD pipeline for web - preprod
name: CI/CD - production

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

on:
push:
branches:
- main
jobs:
eslint:
runs-on: ubuntu-latest
steps:
Check out the code from the repository
- name: Checkout code
uses: actions/checkout@v3
Set up Node. js
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '22'
Install dependencies
- name: Install dependencies
run: npm install
Run ESLint to check for linting errors
- name: Run ESLint
run: npm run lint
test:

runs-on: ubuntu-latest

needs:

eslint

95

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

78

79

80

81

steps:

#

build:

Check out the code from the repository
name: Checkout code
uses: actions/checkout@v3

Set up Node.js
name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '22'

Install dependencies
name: Install dependencies
run: npm install

Run Jest tests
name: Run Jest tests
run: npm test

runs-on: ubuntu-latest

needs: test

steps:

#

Check out the code from the repository
name: Checkout code
uses: actions/checkout@v3

Set up Node. js
name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '22'

Install dependencies
name: Install dependencies
run: npm install

Build the project

name: Build Project

env:
REACT_APP_BACKEND_URL: ${{ secrets.BACKEND_URL_PROD }}
CI: false # Disable treating warnings as errors

run: npm run build

Upload the build artifact

96

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

- name: Upload Build Artifact
uses: actions/upload-artifact@v3
with:

deploy:

name: build
path: build/

runs-on: ubuntu-latest

needs:

steps:

build

Download the build artifact

- name: Download Build Artifact
uses: actions/download-artifact@v3
with:

name: build
path: ./ # Download files into the current directory

Clean the target directory on the server

- name: Clean Target Directory on Server

uses: appleboy/ssh-action@v0.1.6
with:

host: ${{ secrets.SERVER_HOST_PROD }}
username: ${{ secrets.SERVER_USER_PROD }}
key: ${{ secrets.SERVER_SSH_KEY_PROD }}
script: |

rm -rf /var/www/madboks-web/*

Upload the build to the server
- name: Upload Build to Server

uses: appleboy/scp-action@v0.1.4
with:

host: ${{ secrets.SERVER_HOST_PROD }}
username: ${{ secrets.SERVER_USER_PROD }}
key: ${{ secrets.SERVER_SSH_KEY_PROD }}
source: "./x*"

target: "/var/www/madboks-web"

We had another CI/CD pipeline for pre-production. It has exactly the same steps, except it

triggers on

pushes to the preprod branch, and has different github secret variables so it deploys

to the preprod server.

97

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

B.3 (I pipeline backend

// CI pipeline for backend

name: CI

Trigger the workflow on pull requests to the main or dev branches

on:

pull_request:

branches:

jobs:

test:

main
dev
preprod

runs-on: ubuntu-latest

steps:

#

build:

Check out the code from the repository
name: Checkout code
uses: actions/checkout@v3

Set up Node.js
name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: '22'

Install dependencies
name: Install dependencies
run: npm install

Run Jest tests
name: Run Jest
run: npm test

needs: test
runs-on: ubuntu-latest

steps:

#

Step 1: Checkout the code
name: Checkout Code
uses: actions/checkout@v2

98

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

20

21

22

23

Step 2: Install Dependencies

- name: Install Dependencies

run: npm install

Step 3: Build the Project
- name: Build Project

env:

SUPABASE_URL: ${{ secrets.SUPABASE_URL }}
SUPABASE_KEY: ${{ secrets.SUPABASE_KEY }}
SUPABASE_SERVICE_ROLE: ${{ secrets.SUPABASE_SERVICE_ROLE }}

SMTP_USER: ${{
SMTP_HOST: ${{
SMTP_PASS: ${{
SMTP_PORT: ${{

secrets.SMTP_USER 1}}
secrets.SMTP_HOST }}
secrets.SMTP_PASS }}
secrets.SMTP_PORT }}

FROM: ${{ secrets.FROM }}

FRONTEND_URL: ${{ secrets.FRONTEND_URL }}

run: npm run build

B.4 CI/CD pipeline backend

// CI/CD pipeline for backend
name: CI/CD Pipeline - Production

on:
push:

branches:

- main

jobs:
test:

runs-on: ubuntu-latest

steps:

Check out the code from the repository

- name: Checkout code

uses: actions/checkout@v3

Set up Node.js

- name: Set up Node.js

uses: actions/setup-node@v3

with:
node-version:

1991

99

24

25

26

27

28

29

30

31

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Install dependencies
name: Install dependencies

run: npm install

Run Jest tests
name: Run Jest
run: npm test

deploy:

needs: test

runs-on: ubuntu-latest

steps:

#

Step 1: Checkout

the code

name: Checkout Code
uses: actions/checkout@v2

Step 2: Install Dependencies
name: Install Dependencies

run: npm install

Step 3: Build the Project
name: Build Project

env:

SUPABASE_URL: ${{ secrets.SUPABASE_URL_PROD }}
SUPABASE_KEY: ${{ secrets.SUPABASE_KEY_PROD }}
SUPABASE_SERVICE_ROLE: ${{ secrets.SUPABASE_SERVICE_ROLE_PROD }}

SMTP_USER: ${{
SMTP_HOST: ${{
SMTP_PASS: ${{
SMTP_PORT: ${{

secrets.SMTP_USER 1}}
secrets.SMTP_HOST }}
secrets.SMTP_PASS }}
secrets.SMTP_PORT }}

FROM: ${{ secrets.FROM }}

FRONTEND_URL: ${{ secrets.FRONTEND_URL_PROD }}

run: npm run build

Step 4: Upload Files to the Server
name: Upload Files to Server
uses: appleboy/scp-action@v0.1.4

with:

host: ${{ secrets.SERVER_HOST_PROD }}
username: ${{ secrets.SERVER_USER_PROD }}
key: ${{ secrets.SERVER_SSH_KEY_PROD }}

source: "."

target: "/var/www/madboks-backend"

Step 5: Restart Fastify Service with Environment Variables

name: Restart Fastify Service

71
72
73
74
75

76

78
79
80
81
82
83
84
85
86
87
88
89
9%
91
)
93
[
9%
9%
97
98
99

100

101

102

103

104

105

106

107

uses: appleboy/ssh-action@v0.1.6

with:

host: ${{ secrets.SERVER_HOST_PROD }}
username: ${{ secrets.SERVER_USER_PROD }}
key: ${{ secrets.SERVER_SSH_KEY_PROD }}

script:

Export all environment variables

echo "Setting environment variables..."

export
export
export
export
export
export
export
export
export

SUPABASE_URL=${{ secrets.SUPABASE_URL_PROD }}

SUPABASE_KEY=${{ secrets.SUPABASE_KEY_PROD }}
SUPABASE_SERVICE_ROLE=${{ secrets.SUPABASE_SERVICE_ROLE_PROD }}
SMTP_USER=${{ secrets.SMTP_USER }}

SMTP_HOST=${{ secrets.SMTP_HOST }}

SMTP_PASS=${{ secrets.SMTP_PASS }}

SMTP_PORT=${{ secrets.SMTP_PORT }}

FROM=${{ secrets.FROM }}

FRONTEND_URL=${{ secrets.FRONTEND_URL_PROD }}

Create an .env file for the app

echo "Creating .env file..."

cat <<EOF > /var/www/madboks-backend/.env
SUPABASE_URL=${{ secrets.SUPABASE_URL_PROD }}
SUPABASE_KEY=${{ secrets.SUPABASE_KEY_PROD }}
SUPABASE_SERVICE_ROLE=${{ secrets.SUPABASE_SERVICE_ROLE_PROD}}
SMTP_USER=${{ secrets.SMTP_USER }}
SMTP_HOST=${{ secrets.SMTP_HOST }}
SMTP_PASS=${{ secrets.SMTP_PASS }}
SMTP_PORT=${{ secrets.SMTP_PORT }}

FROM=${{ secrets.FROM }}

FRONTEND_URL=${{ secrets.FRONTEND_URL_PROD}}

EOF

Install dependencies and restart the app
echo "Restarting application..."

cd /var/www/madboks-backend

npm install --omit=dev

pm2 restart all || pm2 start dist/index.js --name "madboks-backend" --env

< production

We had another CI/CD pipeline for pre-production. It has exactly the same steps, except it
triggers on pushes to the preprod branch, and has different github secret variables so it deploys
to the preprod server.

101

Appendix C

Transcription

C.1 First Meeting

Sofia:
So maybe just to get that out of the way, if it's okay that we record the audio so we have for
notes afterwards.

Roxana:
Yeah, that’s no problem at all.

Sofia:
Perfect. So, we have prepared a couple of questions, and then we will also show you some
examples of how the design can look like.

Bence:
I can take the questions. So, just to catch up from last time, because some of us were not there,
unfortunately.

Roxana:
Yeah, nice to meet you.

Bence:
You too. My name is Bence, by the way. I don’t know if it, oh yeah, it should show my name,
hopefully. It does, but

Roxana:
It’s showing Sabo.

Bence:

Yeah, that’s the second name.

It should be the other way. But yeah, anyways, so last time, I think you talked about some stuff
that would be very nice to have documented and probably one of them was like this, overview

102

of how the mailbox works today. So could you maybe just quickly do like a rundown of the
daily operations and big picture?

Roxana:
Do you want to hear about how the food distribution work in general or how the booking
system works in particular?

Bence:
I think both, but the booking system is more important for us.

Roxana:

Okay, cool. So Madboks works on the basis of weekly distributions, which we organize three
times a week: Two in Amager on Wednesdays and Sundays, and one in Nerrebro on Saturdays.
For these food distributions, the volunteers collect food donations from supermarkets and
bakeries. They bring it to our culture houses, where we have partnerships with Copenhagen
municipality to use these spaces, and they sort the good [food] from the bad.

They categorize it and then make these food boxes with a variety of fruits, veggies, bread,
pastries—whatever food donations we receive from supermarkets. In order for people to book
these food boxes, currently we have Google forms that people fill in on a weekly basis. The
Google forms open up the day before the food distribution.

People can choose from different time slots at 10-minute intervals. On Saturdays and Sundays,
it’s between 3 and 4 pm, and on Wednesdays, it’s between 5:30 and 6:30 pm, because we also
wanted to have a food distribution during the weekdays after work hours so that people can
access those as well.

In order to get people to book these boxes, we normally just post on different local Facebook
groups. The majority of people who come to our events are from the local area—neighbors,
students. We also promote in a lot of refugee groups and social groups for people living on
lower incomes, single-parent households, and immigrant groups, so we try to target groups
that would benefit most from having access to free food, and also groups interested in this
project from a sustainability perspective. And that’s kind of it in a nutshell.

Bence:
Yeah, I think that’s good.

Sofia:

Just a quick question since we talked about it. So if people book and do not meet up, or if
they cancel last minute, do you have any record of that? Do you write it down, or do you have
some sort of numbers of the spillover from people not showing up or canceling too late?

Roxana:

Yes. So, in order for people to cancel, the booking form also instructs people that if they
need to cancel their booking, they should write to our Instagram or Facebook page, where our
communications volunteers can see the messages and delete their name from the attendance
list, so that we’re not going to prepare boxes for them.

On the day, we have a bit of a margin of error that we’ve gotten used to. So we always expect to
have five to ten no-shows, and we usually take that into account when making the boxes. For
instance, if we collected a hundred boxes, and we know that because we collected a hundred,

103

we can give a hundred boxes out, right?

To ensure that we don’t have food waste at the end of the event, we usually open up about
110 bookings. So then we have 10 extra bookings. We normally get three or four cancellations,
and the rest—six or seven—we expect won’t show up. If we see during the day that everyone
is showing up, then we might split some of the boxes and make slightly smaller ones. But
normally, it works out. Around 100-102 people show up out of the 100 we expected. Sometimes
even one or two fewer.

Sofia:
Okay. Thank you.

Bence:
Yeah, and also, for the process, what part do you find most frustrating?

Roxana:

All of it.

No, I think the part of the process I find a bit annoying, from our perspective, is that people
can’t easily edit and adjust their booking. People can, but they don’t know that they can
edit their responses in the Google forms, because it’s a pretty basic tool. You can edit your
responses, but not a lot of people know that.

So, because they don’t do it, we end up playing a kind of mind game with ourselves: we
have this many bookings, this many boxes, expect this many no-shows, and expect this many
cancellations. And it also means having a volunteer who is actively checking Facebook and
Instagram throughout the day on the days of the food distributions. This can be annoying,
especially on Wednesdays, as many of our volunteers are either students or work, so it’s
not always easy to have someone checking and responding immediately to cancellations or
changes.

The fact that you can'’t easily edit or change bookings is a problem. I also think it’s an issue
from the attendees’ perspective, because filling out the booking form doesn’t take long. A lot
of the people who come to our events are regulars. I think at this point they don’t even read
the information anymore—they just click through and show up. And because they don’t use
Google forms often, they don’t know they can edit their booking.

They don’t know the reason we ask people to log in with their Google accounts is so they can
receive a copy of their responses, which functions as a confirmation. I'm not going to wait
until every box is booked to manually send emails to confirm bookings, right? So that manual
aspect is a little frustrating.

Lastly, Google add-ons aren’t the best, so we can’t easily automate the process of limiting
bookings per time slot. What happens is that the add-ons don’t work well or might stop
working altogether, as has happened recently. We end up with 40 bookings at 3 o’clock, and
then none until 3:30. It kind of works out because people aren’t always on time, but it’s a
problem in winter. It’s not a big deal to queue for 10 minutes in summer, but in winter, when
it’s cold and rainy, it’s an issue when people have to queue outside, as there’s no indoor space.
Having the ability to limit responses by time frame would help spread out the attendees and
avoid people standing in the cold.

104

Appendix D

Analysis

Account

Class Description Selected

Admin Manages events, reservations, and logistics, with operations like | v’
creating, modifying, or cancelling events.

Volunteer Handles logistics and food distribution tasks, including collection, | v/
sorting, and preparation.

Customer Central to reservations, interacting with bookings and cancella- | v/
tions.

Event Organises mainly food distribution. v

Reservation Tracks individual reservations, including customer details, associ- | v'
ated events, and status.

Organisation Manages food during preparation. v

Box

Customer Box Represents food boxes reserved or picked up by customers. v

Transaction Manages payment details. v

Location Represents venues for events. v

Food Retailer Supplies surplus food, coordinates donations, and schedules lo- | X
gistics.

Food Item Represents individual food items. X

Rental Car Used for food transport logistics. X

Device Represents computers and phones for when using the system. X

Google Forms Third party tool for reservations. X

Excel Sheet Third party tool for tracking logistics. X

Social Media Used for updates and announcements. X

Post

Social Media Used for managing posts. X

105

Class

‘ Description

Selected ‘

Table D.1: Class description and selection

Events Description Selected

Reservation Created A reservation is made for a food box by a customer. v

Reservation Modified Details of an existing reservation are updated. v

Reservation Cancelled | A reservation is cancelled by the customer or admin. v

Event Created An event is added to the system by an admin. v

Event Modified An existing event is updated with new information. v

Event Cancelled An event is removed or cancelled. v

Location Created A location is added to the system by an admin. v

Location Modified Updates are made to a venue’s details. v

Location Deleted A venue is permanently removed from the system. v

Bought A payment is made for a reserved food box, completing the | v/
transaction.

Prepared A food box is prepared and made available for reservation or | v/
distribution.

Signed Up/In A user (customer, volunteer, or admin) registers or signsin to | v/
the system.

Signed Out A user (customer, volunteer, or admin) signs out of the sys- | v/
tem.

Account Deleted A user account is permanently removed from the system. v

Assigned A volunteer is assigned to assist with an event. X

Shipped Food items are transported from retailers to sorting or distri- | X
bution locations.

Distributed Prepared food boxes are handed out to customers during a | X
distribution event.

Processed Payments made manually, like cash, outside the system are | X

handled.

Table D.2: Event description and selection

106

Appendix E

Navigation

Customer
logged in

E Homepage : ¢ Homepage
i (Notloggedin) ™ Logoutor delete | (customer logged in)
""""""""""""" account button

clicked

|
l l

l

l

[Booking Page [News

{ Volunteer Sign Up

[About

Changes Edit
applied/ reservation
Changes clicked
cancelled

Cancellation
confirmed/

Cancellation
cancelled

A\

Edit reservation
pop-up

]

Form submitted/
Form cancelled

Upcoming event
clicked

Cancel
reservation
clicked

Cancel reservation
pop-up

Figure E.1: Navigation diagram for logged-in users

107

O

Form
submitted
and
confirmation
mail sent

Admin
logged in

account button
clicked

Logout or delete

(Admin logged in)

(W J

A
Changes Active event Caha“ng Upcoming event
applied/ clicked C"\’sn o clicked
Changes canoegHed [Form submitted/
cancelled Form cancelled
Upcoming event pop-
e R

existing location
chosen

‘Create new
event' button
clicked

Choose location pop-
up

Form submitted/
Form cancelled

'new’ location
chosen

Create new event Create new location
pop-up Pop-up

Figure E.2: Navigation diagram for admins

Form submitted/|

Form cancelled ©
clicked

‘Create new
llocation button

Changes
applied/
Changes
cancelled

Create new location
POp-up

)

{Edil location pop»up]

Location clicked

108

Appendix F

Product owner final evaluation

Questions asked:

"To finalise our project, we wanted to hear your thoughts/feedback on the collaboration.

How satisfied are you with the communication and feedback during this project?

Were you satisfied with the frequency and format of the meetings?

Did you feel that your input was listened to and incorporated intro the development process?
Thank you so much!”

Roxana Zalto written response:

"Feedback:

- Very happy with the work in general and with the project

- Communication and frequency of meetings: very happy with the frequency of meetings and would
maybe encourage a bit more communication and collaboration online between meetings on an as-needed
basis to ensure things are tackled as they happen

- Meeting format great

- I definitely felt my input was considered and incorporated in the project and I'm super happy with the
end result.”

109

Appendix G

User Stories

Customer User Stories:

As a customer, I want to view available food box events so that I can select a distribution
event that aligns with my schedule.

As a customer, I want to reserve a food box by selecting from available time slots to
ensure convenient access at my preferred time.

As a customer, I want to receive a booking confirmation with reservation details so that
I have a clear record of my booking.

As a customer, I want the ability to modify or cancel my reservation if I cannot attend,
ensuring that my slot can be reassigned effectively.

As a customer, I want to receive notifications if an event or my reservation is modified
or cancelled, allowing me to adjust my plans accordingly.

As a customer, I want to contact Madboks support easily if I have any questions.

Admin User Stories:

As an admin, I want to create, update, or delete food distribution events to effectively
manage distributions based on available resources and demand.

As an admin, I want efficient reservation management, including booking limitations
and cancellation tracking, to avoid overbooking and optimise user experience.

As an admin, I want notifications of new reservations, modifications, and cancellations
to remain informed and make necessary adjustments.

As an admin, I want access to templates for recurring events because it makes event
setup easier and more efficient.

110

Appendix H

Sprints

H.0.0.1 S1F1: Homepage (first iteration)

The homepage serves as the entry point for the web platform. It encapsulates Madboks” main
mission goals and prompts new users to give website functionalities a go.

Events Volunteer

Help with reducing food
waste, secure your food
box today!

Reserve Now

Figure H.1: First iteration of the homepage

The information is broken down into sections encapsulating one core functionality or message
each, such as a call-to-action for becoming a volunteer, which encourages visitors to actively
contribute to Madboks’ mission. Other highlights include information about upcoming events

111

and locations.

Madboks

Locations

Become a
Volunteer

Sundholmsvej 28a Kapelvej 44 Urmagerstien 28
2300, Kabonhavn S 2200, Kebonhavn N 2300, Kobenhavn S

i B . .
s

a1

Figure H.2: First iteration of the homepage 2 Figure H.3: First iteration of the homepage 3

H.0.0.2 S1F2: Navigation bar (hardcoded first iteration)

The navigation bar enables quick navigation across the website for different user roles (guests,
customers, and admins). A notable focus of the development team is to minimise the number
of clicks it takes to get from A to B while avoiding clutter.

For guests, the bar displays options like Home, Events, News, Volunteer, About and Lo-
gin/Register.

Additionally, the Madboks logo, displayed on the left side of the bar, functions as a home
button, allowing users to quickly return to the main landing page.

%% Home Events News Locations g
M

BOKS
Hello, John Doe!

Profile

Your Events Settings

Log Out

FEs
M& Sundholmsvej 28a, 2300 Kebenhavn S Barm
I —

e

Figure H.4: Navigation bar

H.0.0.3 S1F3: Upcoming events component (mock data)

The upcoming events component displays a list of the upcoming food distribution events.
Each card includes the event name (which is the location), date and time. The design of this
component closely resembles Facebook’s design [2}

112

Upcoming Events

L3
Sundholmsvej 9a, Sundholmsvej 10a, Sundholmsvej 11a, BOKS
2300 Kgbenhavn S 2300 Kgbenhavn S 2300 Kgbenhavn S
Tues, 18. Oct at 18:00 Tues, 18. Oct at 18:00 Tues, 18. Oct at 18:00

Figure H.5: Upcoming events component

H.0.0.4 S1F4: Your events component (mock data)

The your events component provides logged-in customers with an overview of the events they
have booked boxes for. Since this component was developed in parallel with the login and
signup functionalities, it used mock data for now. The reservation is displayed, showing de-
tails like event name, date and time.

From a technical standpoint, it works almost identically to the upcoming events but uses a
horizontal display component, and is currently missing the edit a cancel buttons - these are
added briefly following the sprint review. The design of this component is also inspired by
Facebook’s "my events" page.

@% Book Events News Login Join

e

Your Events

Sundholmsvej 28a, 2300 Kebenhavn S
~ Tues, 18. Oct at 18:00

Sundholmsvej 28a, 2300 Kebenhavn S
L Tues, 18. Oct at 18:00

Show More

Figure H.6: Your events component

113

H.0.0.5 S1F5 Location creation

The location creation is an feature for admins, that enables the creation and management of
locations templates. When creating a location, the admin-user type in the 'default’ values
for that location. These default values are then used as ‘templates’” when creating a food
distribution event for that location. New locations could be created by selecting "new” in the
drop-down menu for event creation.

H.0.0.6 S1F6: Event creation (first iteration

The events creation is a feature for admins, that enables the creation and management of food
distribution events. When creating a new event, it is based on the default values from the
location. The event creation is inspired by Facebook Marketplace, where the left side is where
you write the values, and on the right side, you see at preview.

H.0.0.7 S1F7: Reservation page

The reservation page allows customers to book food boxes for specific events. Users select
a desired time slot and the desired number of boxes, fill out their contact info and confirm
their reservation by agreeing to the terms and conditions. The page is separated into sections,
some collapsible, to make it less overwhelming to use. The idea is to only show the contact
info section as the default for non-logged-in users since the system does not have the required
information to auto-fill those fields. This would make the reservation flow more effective for
logged-in users, and give the non-logged-in user an incentive to create an account.

114

Reserve Events News

B

Reserve your MadBoks
Select an event
Sundholmsvej 28a

2300 Kebenhavn §
18. Oct 15:00 - 16:00

Sundholmsvej 28a
2300 Kebenhavn §
18. Oct 15:30 - 16:30

Show More

Info before you reserve

Sundholmsvej 28a
2300 Kebenhavn S

18. Oct 15:30 - 17:30

@D

Sundholmsvej 28a
2300 Kebenhavn S
18. Oct 15:00 - 20:00

Sundholmsvej 28a
2300 Kebenhavn §
18. Oct 15:00 - 16:00

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

1 agree to the terms and conditions [

How many boxes would you like to reserve? - 1 +
Choose time for pick-up

Choose your donation (i)

25 DKK
Minimum donation

50 DKK
Medium donation

Covers food transport Covers all event logistics

Figure H.7: Reservation page

How many boxes would you like to reserve? - 1 +

Choose time for pick-up

Choose your donation g

25 DKK
Minimum donation

50 DKK
Medium donation

Covers food transport Covers all event logistics

Contact info

First Name

First name

Email

Email

Comments

Write your comments here

Figure H.8: Reservation page 2

75 DKK
Large donation
Helps organise future events

75 DKK
Large donation
Helps organise future events

Last Name

Last name

Phone Number

Phone number

Cancel

Occupation
Student Employed Unemployed Refugee background
Single parent Pensionist Low income family Other

Reserve

115

An important design decision, inspired by TooGoodToGo and Facebook Marketplace, was
the use of visually distinct modals to break up the lengthy form, reducing repetition and
confusion while differentiating sections. The design prioritised maintaining a visual hierarchy
and ensuring clear separation between sections to enhance usability and prevent users from
feeling overwhelmed.

H.0.0.8 S2F2: Volunteer page

The volunteer page is fairly straightforward containing some clarification about the volunteer-
ing process and a form to submit a request to become a Madboks volunteer. Since the email
service is still being worked on, this product backlog item only considers the creation of the
form, but it is not yet hooked up to any email service.

The information needed here was decided by the product owner. To ensure that the design
looks good on all screen sizes, the styling of this page considers all screen sizes from desktop
through tablet to mobile. Making the entire website mobile-friendly and highly responsive
should also be an important thing to keep in mind for any other page.

@ Chrome File Edit View History Bookmarks Profiles Tab Window Help 3 76% @ = Q @ Wed13Nov 12.32

) 8% Mail-Be X | (O Emailser X = & ChatGPT X Madboks X | @ Profile:C X | @ Teamfor X | & 1 1 Indbakke X (& Madboks X + v

@ localhost:3000/volunteer

% Home Events News Volunteer About Login Join
M
BOKS
Volunteer Signu|
Madboks gnup
First Name Last Name
5 P
How to = o5 ‘ Nam
e W)
et B PN
CTSE AT Email Phone Number
involved g ‘
@ Registerasa Date of Birth Country of Origin
volunteer dd/mm/yyyy =)
O Read your
@elcormeel How did you hear about us?
sign up for your Food distribution
first shift ocations ! :
Wednesdays at
Our volunteers collect, sort, Uigoe(sten 28
pack and distribute food boxes Saturdays at Volunteer Preferences ~
made from food surplus Kapelvej 44
Sl O Sundays at How often would you like to volunteer?
Shifts last 3-4 hrs. sundholmsvej 28a
Every second week Once a month
Do you see yourself as a potential team leader?
e ~ p

Figure H.9: Volunteer page

116

H.0.0.9 S2F7: Event popup, showing information and description of the event

On the page ’events’, users can now click on an upcoming event to view more details or
proceed with a reservation. The pop-up can be seen in figure

Madboks food distrubution 9/12

Fri Dec 13, 16:00 - 17:00
Kapelvej 44, 2200 Kebenhavn N
Description:

Bring your own bags - one for fruit & veggies and one for bread.
PLEASE ONLY BOOK IF YOU KNOW YOU CAN COME! IF YOU DON'T COME, YOUR BOX GOES TO WASTE.

You will get a box of 7-10 kg, full of fruits, veggies, bread and other good stuff. The boxes are made with food surplus & food waste donated by supermarkets, so some of it might be overripe,
wilted or a bit bruised. We encourage you to give it some care and a light trimming & save what is still edible. No food should go to waste unless it is rotten.

In order to save the waste, we will keep your booking for 10-15 minutes, after that the food will be given to other people.

If you know you would be late for picking up your box, please contact us in advance via Facebook (Madboks) or Instagram (madboks_kbh).

Thank you!

Please do not attend our events if you expect our fruits and veggies to be in perfect condition - they are not. We are here to save edible food from going to waste.

Figure H.10: Event info pop-up

H.0.0.10 S2F4: Admin dashboard - display events/locations and edit location functionality

The admin dashboard has the following components; ‘create new event’ button, a list of up-
coming events and a list of locations. If the user clicks on a location, a pop-up for editing
location shows up.

H.0.1 S2F8: Connect navigation bar with auth

Now the navigation bar works with Supabase authentication. Once logged in, the navigation
should adjust to include tailored links based on the user’s role. For customer, it is: "Home’,
"Reservation’, 'Events’, "Volunteer’, 'News’ and "About’, and for admins, it is: "Dashboard’,
"Locations’, "Volunteer” and "Events’. The code checks for a logged in user with admin role to
be able see the admin workflow.

H.0.2 S2B1: Setting up the server and hosting + pipelines

The Ubuntu server for hosting the website and the backend was created, and the GitHub
Actions were used to create CI/CD pipelines that both run tests, build and deploy to the
server.

117

20

21

22

23

24

25

26

H.0.3 S2B2: Email service backend

this.fastify.post(
'/api/send-confirmation-email',
async (request, reply) => {
const { to } = request.body as { to: string };

// Validate input
if (Mto) {
return reply
.status (400)
.send({ error: 'Missing required field: to' });

try {
const mailService = MailService.getInstance();
await mailService.sendConfirmationEmail (to);
return reply.status(200) .send({
message: 'Confirmation email sent successfully!',
b;
} catch (error) {
request.log.error ('Error sending confirmation email:', error);
return reply
.status (500)
.send({ error: 'Failed to send confirmation email.' });

H.0.4 S3F3: About us page

Creating the "about us" page was quite straightforward talking about its contents with the
product owner and implementing a mobile-compatible, purely frontend solution. This page
encapsulates the most important things to learn about Madboks as someone completely new
to this non-profit organization, and the most important call to action and social-media buttons
are added to ensure a smooth flow from this page to any other.

118

20

21

22

23

24

25

26

27

28

29

Join Our Mission

About Us

Togather, we're fihting food waste and bulding a

Who We Are

Our Impact

Join Our Mission

Contact Us

Figure H.11: About us 1 Figure H.12: About us 2

H.0.5 S3F4

const updateTimeslots = (boxDifference: number) => {
setTimeslotsFormData((prevTimeslots) => {
const updatedTimeslots = [...prevTimeslots];

// Calculate the original total available spots
const originalAvailableSpots = originalNumberOfBoxes - reservedBoxes;

// Calculate the target total spots
const targetTotalSpots = boxDifference + originalAvailableSpots;

// Calculate the current total available spots
const currentTotalSpots = updatedTimeslots.reduce((sum, timeslot) => sum +
— timeslot.available_spots, 0);

// Calculate the difference to be adjusted to match the target
let adjustmentNeeded = targetTotalSpots - currentTotalSpots;

// Distribute the adjustment evenly across timeslots

const timeslotCount = updatedTimeslots.length;

const equalAdjustment = Math.floor(adjustmentNeeded / timeslotCount) ;
let remainder = adjustmentNeeded % timeslotCount;

// Apply equal adjustments to all timeslots
updatedTimeslots.forEach((timeslot) => {
timeslot.available_spots += equalAdjustment;

b;

// Distribute the remainder
for (let i = 0; remainder !== 0 && i < timeslotCount; i++) {
if (remainder > 0) {

119

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

updatedTimeslots[i] .available_spots += 1;

remainder--;

} else if (remainder < O && updatedTimeslots[i] .available_spots > 0) {
updatedTimeslots[i] .available_spots -= 1;
remainder++;

}
3

// Ensure no timeslot has negative spots and adjust if necessary
let extraNeeded = 0; // Track how much adjustment is required to fix negatives
updatedTimeslots.forEach((timeslot) => {
if (timeslot.available_spots < 0) {
extraNeeded += timeslot.available_spots; // Negative values decrease the
- adjustment
timeslot.available_spots = 0; // Reset to O since spots can't be negative
}
b

// Redistribute the extra adjustment across other timeslots
if (extraNeeded < 0) {
for (let i = 0; extraNeeded '== 0 && i < timeslotCount; i++) {
if (updatedTimeslots[i].available_spots > 0) {
const reduction = Math.min(updatedTimeslots[i].available_spots,
< -extraNeeded) ;
updatedTimeslots[i] .available_spots -= reduction;
extraNeeded += reduction;
}
}

return updatedTimeslots;
b
I8

H.0.6 S3B4

H.0.6.1 S3B4-1

fastify.post(
“${prefix}-,
(req: FastifyRequest<{ Body: { data: Reservation } }>, reply) =>
reservationController.createReservation(req, reply),

)

120

20

21

22

23

24

25

26

27

28

29

H.0.6.2 S3B4-2

public async createReservation(
req: FastifyRequest<{ Body: { data: Reservation } 1}>,
reply: FastifyReply,

) {

const result = await this.reservationService.createReservation(

req.body.data,
)3

return this.sendResponse(reply, result, 201);

H.0.6.3 S3B4-3

public async createReservation(

DE:

record: Reservation,

Promise<Result<Reservation, BaseError>> {

const validationResult = this.validate(record, false);

if (validationResult.success === false) return validationResult;

// Attempt to book the timeslot
try {
await TimeslotService.getInstance().bookTimeslot(record.timeslot_id);
} catch (error) {
return ResultFactory.Err(
this.handleSupabaseError (error, 'bookTimeslot', {
record: record.toJson(),
g
);
}

// Attempt to create the reservation
const { data, error } = await this.create(record);

if (error) {
// Rollback the timeslot if reservation creation fails
try {

await TimeslotService.getInstance().cancelTimeslot(record.timeslot_id);

} catch (rollbackError) {
return ResultFactory.Err(

this.handleSupabaseError (rollbackError, 'rollbackTimeslotBooking', {

record: record.toJson(),

P

121

30

31

32

33

34

35

36

37

38

39

40

41

20

21

22

23

24

25

26

27

28

29

)

return ResultFactory.Err(
this.handleSupabaseError (error, 'createReservation', {
record: record.toJson(),
b,
)3

return this.validateAndMapRecord(data!) ;
}

H.0.6.4 S3B4-4

public async updateReservationTimeslot(

id: string,
new_timeslot_id: string,
Promise<Result<Reservation, BaseError>> {
// Fetch existing reservation
const { data: reservation, error: reservationError } =
await this.findById(id);
if (reservationError) {
return ResultFactory.Err(
this.handleSupabaseError(
reservationError,
'updateReservationTimeslot',
{
id,
new_timeslot_id,

if (lreservation) {
return ResultFactory.Err(
new ValidationError('Reservation not found', { id }),
);
}

// Cancel the current timeslot
try {

122

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

await TimeslotService.getInstance().cancelTimeslot(
reservation.timeslot_id,
)8
} catch (error) {
return ResultFactory.Err(
this.handleSupabaseError (error, 'cancelTimeslot', {
id,
timeslot_id: reservation.timeslot_id,
b,
);
}

// Attempt to book the new timeslot
try {
await TimeslotService.getInstance().bookTimeslot(new_timeslot_id);
} catch (error) {
// Rollback the previous timeslot booking
await TimeslotService.getInstance().bookTimeslot(reservation.timeslot_id);
return ResultFactory.Err(
this.handleSupabaseError (error, 'bookTimeslot', {
id,
new_timeslot_id,
b,
s
}

// Update the reservation with the new timeslot ID
const { data: updatedReservation, error: updateError } =
await this.updateField(
id,
ReservationFields.TIMESLOT_ID,
new_timeslot_id,

g

if (updateError) {
// Rollback the new timeslot and rebook the old one
await TimeslotService.getInstance().cancelTimeslot(new_timeslot_id);
await TimeslotService.getInstance().bookTimeslot(reservation.timeslot_id);
return ResultFactory.Err(
this.handleSupabaseError (updateError, 'updateReservationField', {
id,
new_timeslot_id,
b,
IE
}

return this.validateAndMapRecord(updatedReservation!);

123

77

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

H.0.6.5 S3B4-5

public async updateActiveEvent (

R

id: string,
description: string,
number_of_boxes: number,
timeslots: Timeslot[],
Promise<Result<Event, BaseError>> {
// Fetch the original state
const { data: originalEvent, error: fetchError } = await this.findById(id);
if (fetchError) {
return ResultFactory.Err(
this.handleSupabaseError(fetchError, 'fetchOriginalEvent', { id }),
)8
}

// Update the event fields
const { data, error } = await this.updateTwoFields(
id,
'description',
description,
'number_of _boxes',
number_of_boxes,
)3
if (error) {
return ResultFactory.Err(
this.handleSupabaseError(error, 'updateEventField', {
id,
description,
number_of_boxes,
b,
);
}

try {

// Update timeslot availability

const timeslotService = TimeslotService.getInstance();

await timeslotService.updateTimeslotsAvailability(timeslots);
} catch (timeslotUpdateError) {

// Rollback event updates

await this.updateTwoFields(

id,

124

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

'"description',
originalEvent!.description,
'number_of_boxes',
originalEvent!.number_of_boxes,

)

// Return the error for timeslot update

return ResultFactory.Err(
this.handleSupabaseError (
timeslotUpdateError,
'updateTimeslotsAvailability',
{
id,

timeslots: timeslots.map(timeslot => timeslot.toJson()),

// Validate and map the updated record

return this.validateAndMapRecord(data!);

3

H.0.6.6 S3B4-6

public async updateTimeslotsAvailability(
records: Timeslot[],

): Promise<Result<Timeslot[], BaseError>> {

for (const record of records) {

const validationResult = this.validate(record, false);
if (validationResult.success === false) return validationResult;

}

for (const record of records) {

const { data, error } = await this.updateField(

record.id,
'available_spots',
record.available_spots,
Y3
if (error)
return ResultFactory.Err(
this.handleSupabaseError (error,
record: record.toJson(),

b,

'updateTimeslotsAvailability', {

125

20

21

22

23

)§
¥

return this.validateAndMapRecords(records);

3

H.0.7 S4F1: User test fixes and small text and layout updates

Fixed line-break in event description, changed the default event description based on PO feed-
back, fixed so links open in new tab, added info box informing that users cannot book more
than one box, fixed the ’see event’ button (now navigates to events), fixed navigate to home
when sign-out/delete user and fixed the cancel button in reservation page, so it navigates to
home.

H.0.8 S4F2: Configuration fix to not expose source code in the browser

In the user test, it was discovered that the source code for the react app is displayed in the
browser when opening the debugger tool. To solve this issue, the build command was changed
to not include source code files when deploying. The build command is therefore the follow-

me:

"build": "react-scripts build && find build -name '*.map' -type f -delete",

126

Appendix 1

Design Criteria for the Madboks Plat-
form

The design of the Madboks platform requires a careful balance between functionality, user ex-
perience, and domain-specific needs. Based on insights from the product owner and analysis of
state-of-the-art platforms like Too Good To Go and Facebook, the design must streamline food
distribution operations, enhance user accessibility, and address logistical challenges unique
to Madboks. This involves creating a user-centric solution that supports both administrators
managing events and customers managing bookings efficiently while reducing manual labour.

Key Design Criteria

¢ User-friendly interface: Ensure the interface is intuitive for users across all demograph-
ics, including first-time users and regular attendees. Draw inspiration from Too Good To
Go’s explore and reservation pages, as well as Facebook’s events page which emphasises
clean layouts and intuitive navigation.

e Simplified booking process: Provide a quick and straightforward booking system to
replace the current reliance on Google Forms. Features like real-time booking confir-
mations, the ability to edit or cancel reservations, and automated reminders will reduce
manual workload for volunteers and improve the user experience.

* Scalable time slot management: Incorporate mechanisms to limit bookings per time
slot, ensuring even distribution of attendees throughout events. This would prevent
overcrowding and mitigate issues like queuing in poor weather, as highlighted by the
product owner.

¢ Administrators workflow optimisation: Reduce the reliance on manual processes by
automating routine tasks, such as handling cancellations and managing time slots. Inte-
gration of tools to monitor attendance and cancellations dynamically would alleviate the

127

workload on administrators, especially during mid-week distributions.

Mobile and desktop compatibility: Design the platform for cross-device usability, tak-
ing cues from Facebook’s dual-platform success. A mobile-first approach should prioritise
accessibility for attendees, while desktop features can support administrators managing
logistics.

Effective communication with customers: Enhance communication with targeted user
groups through email notifications, reminders, and updates. By integrating features to
notify users of cancellations or booking openings, Madboks can minimise no-shows and
optimise food box distribution.

Statistics: Provide an interface, where administrators easily can see relevant statistics for
active events. Including information about how many booked boxes there are for the
events. This will make it easier for the admins to get an overview of the specific statistics
for an event.

128

Bibliography

[1]

(2]

3]

[4]
[5]

[6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

Ugur Aydogdu. CAPTCHA Solutions Comparison: Cloudflare Turnstile vs Google reCAPTCHA.
Oct. 2024. URL: https://epigra.com/en/blog/captcha-solutions-comprasion,

Brevo. Email & multichannel marketing software. 2024. URL: https : //www . brevo . com/
products/marketing-platform/.

Cloudflare. Cloudflare Turnstile. 2024. URL: https://www.cloudflare.com/application-
services/products/turnstile/.

CodeScene. Where Can CodeScene Help You Improve? 2024. URL: https://codescene.com/.

Jean-Paul Garin, Nisfi Mubarokah, and Arpit Bhutani. Food Waste in the Municipality of
Copenhagen: A CIRCULAR ECONOMY VISION. Tech. rep. Copenhagen, Denmark: Cir-
cular Innovation Lab, Aug. 2022. URL: ttps://www.circularinnovationlab.com/post/
food-waste-in-the-municipality-of-copenhagen-a-circular-economy-vision.

Github. About Projects. 2024. URL: https://docs.github.com/en/issues/planning-
and-tracking-with-projects/learning-about-projects/about-projects,

Grafana Labs. The best developer experience for load testing. 2024. URL: https://k6.1i0/.
LinkedIn. Roxana Zlate. 2024. URL: https://www.linkedin.com/in/roxana-zlatel

Lars Mathiassen et al. OBJECT-ORIENTED ANALYSIS & DESIGN. 2. edition. Metodica
ApS, 2018. 1sBN: ISBN 978-87-970693-0-1.

Jakob Nielsen. Usability Engineering. 24-2 8 Oval Road, London NW1 7DX: Academic
Press, Limited, 1993. 1sBN: 0-12-518406- 9. URL: https://dl.acm.org/doi/pdf/10.5555/
2821575,

Open Text Corporation. What is Load Testing? 2024. URL: https://www. opentext . com/
what-is/load-testing,.

Mehmet Ozkaya. Layered (N-Layer) Architecture. Sept. 2021. URL: https : / /medium .
com/design - microservices - architecture - with - patterns / layered - n - layer -
architecture-elbffdb7fad2.

State of Green. Food Waste in Denmark Down by 25 per cent. July 2015. URL: https://
stateofgreen.com/en/news/food-waste-in-denmark-down-by-25-per-cent/.

Supabase. Supabase Documentation. 2024. URL: https://supabase.com/docs,

129

https://epigra.com/en/blog/captcha-solutions-comprasion
https://www.brevo.com/products/marketing-platform/
https://www.brevo.com/products/marketing-platform/
https://www.cloudflare.com/application-services/products/turnstile/
https://www.cloudflare.com/application-services/products/turnstile/
https://codescene.com/
ttps://www.circularinnovationlab.com/post/food-waste-in-the-municipality-of-copenhagen- a-circular-economy-vision
ttps://www.circularinnovationlab.com/post/food-waste-in-the-municipality-of-copenhagen- a-circular-economy-vision
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://k6.io/
https://www.linkedin.com/in/roxana-zlate
https://dl.acm.org/doi/pdf/10.5555/2821575
https://dl.acm.org/doi/pdf/10.5555/2821575
https://www.opentext.com/what-is/load-testing
https://www.opentext.com/what-is/load-testing
https://medium.com/design-microservices-architecture-with-patterns/layered-n-layer-architecture-e15ffdb7fa42
https://medium.com/design-microservices-architecture-with-patterns/layered-n-layer-architecture-e15ffdb7fa42
https://medium.com/design-microservices-architecture-with-patterns/layered-n-layer-architecture-e15ffdb7fa42
https://stateofgreen.com/en/news/food-waste-in-denmark-down-by-25-per-cent/
https://stateofgreen.com/en/news/food-waste-in-denmark-down-by-25-per-cent/
https://supabase.com/docs

[15] Supabase. Users. 2024. URL: https://supabase.com/docs/guides/auth/users.

[16] “The evolution of food donation with respect to waste prevention”. In: 33 (). por: https:
//doi.org/10.1016/j.wasman.2012.10.025, URL: https://www.sciencedirect.com/
science/article/pii/S0956053X12005430.

[17] United States government. A Call to Action: United States Food Loss & Waste 2030 Reduction
Goal. Nov. 2024. URL: https://www. epa.gov/sustainable - management - food/call -
action-united-states-food-loss-waste-2030-reduction-goal.

[18] Wappalyzer. Cloudflare Turnstile. 2024. URL: https://www.wappalyzer.com/technologies/
security/cloudflare-turnstile/.

This bibliography is in alphabetical order.

130

https://supabase.com/docs/guides/auth/users
https://doi.org/https://doi.org/10.1016/j.wasman.2012.10.025
https://doi.org/https://doi.org/10.1016/j.wasman.2012.10.025
https://www.sciencedirect.com/science/article/pii/S0956053X12005430
https://www.sciencedirect.com/science/article/pii/S0956053X12005430
https://www.epa.gov/sustainable-management-food/call-action-united-states-food-loss-waste-2030-reduction-goal
https://www.epa.gov/sustainable-management-food/call-action-united-states-food-loss-waste-2030-reduction-goal
https://www.wappalyzer.com/technologies/security/cloudflare-turnstile/
https://www.wappalyzer.com/technologies/security/cloudflare-turnstile/

	Front page
	English title page
	Contents
	1 Introduction and motivation
	2 State of the Art
	2.1 Too Good To Go
	2.2 Facebook Events
	2.3 Summary

	3 Analysis
	3.1 System Definition
	3.2 Rich picture
	3.3 FACTOR criterion
	3.4 Problem Domain Analysis
	3.4.1 Classes & Events
	3.4.2 Structure
	3.4.3 Behaviour

	3.5 Application domain analysis
	3.5.1 Actors
	3.5.2 Usage

	3.6 Summary
	3.7 Problem statement

	4 Design
	4.1 Requirements
	4.1.1 MoSCoW

	4.2 Database diagram
	4.3 System Architecture
	4.3.1 N-Layers and N-Tiers Architecture

	4.4 Navigation
	4.4.1 Guest Navigation
	4.4.2 Customer Navigation
	4.4.3 Admin Navigation

	4.5 UI design
	4.5.1 UI mock-up
	4.5.2 Summary

	5 Implementation
	5.1 Technology Stack
	5.1.1 Development environment
	5.1.2 Application Technology
	5.1.2.1 Database

	5.1.3 Ensuring security with Cloudflare Turnstile Captcha
	5.1.4 DevOps and CI/CD
	5.1.4.1 Development lifecycle
	5.1.4.2 Frontend pipelines
	5.1.4.3 Backend pipelines

	5.1.5 Hosting on server
	5.1.6 Docker

	5.2 Application of Agile Principles
	5.3 Sprint 1
	5.3.1 Sprint Planning
	5.3.2 Frontend items
	5.3.3 Backend items
	5.3.3.1 S1B1, S1B2, S1B3: CRUD for events, locations and reservation

	5.3.4 Sprint Review

	5.4 Sprint 2
	5.4.1 Sprint Planning
	5.4.2 Frontend items
	5.4.2.1 S2F1: Homepage (second iteration)
	5.4.2.2 S2F3: Email service frontend and corresponding forms
	5.4.2.3 S2F5: Login and signup UI connected with Supabase auth
	5.4.2.4 S2F6: Connect upcoming events, your events and reservation with backend/database

	5.4.3 Backend items
	5.4.4 S2B2: Email service backend and email templates
	5.4.5 Sprint Review

	5.5 Sprint 3
	5.5.1 Sprint Planning
	5.5.2 Frontend items
	5.5.3 S3F1: Mobile Compatibility
	5.5.4 S3F2: Cloudflare Turnstile
	5.5.5 S3F4: Admin dashboard makeover, timeslot fix, and edit active and upcoming events
	5.5.6 S3F5: 'Event' page updates - UI fix and pop-up to edit/cancel booked events.
	5.5.7 S3F6: Reservation with timeslots
	5.5.8 S3F7: Location page for admin
	5.5.9 Backend items
	5.5.10 S3B1: Cloudflare Turnstile Captcha
	5.5.11 S3B3: Setup of pre-production server
	5.5.12 S3B4: Timeslots/Locations/Events/Reservations makeover
	5.5.13 S3B5: Email updates (send multiple emails at once, add personal information to formatting using Handlebars)
	5.5.14 S3B6: Docker Setup
	5.5.15 Sprint Review
	5.5.15.1 User acceptance test

	5.6 Sprint 4
	5.6.1 Sprint Planning
	5.6.2 Frontend items
	5.6.3 S4F3: More mobile compatibility
	5.6.4 S4F4: Email updates
	5.6.5 Sprint Review

	6 Quality Assurance
	6.1 Unit tests
	6.2 User Tests
	6.2.0.1 Product owner and admin tests
	6.2.0.2 Volunteer/customer tests

	7 Overview of the final product
	8 Discussion
	8.1 Process
	8.1.1 Reflections on the development process

	8.2 The product owner’s reflections on the development process
	8.3 How QA could have been improved
	8.3.1 Integration testing
	8.3.2 Load tests
	8.3.3 Unit tests on the frontend side
	8.3.4 Static code analysis (CodeScene)

	8.4 Future work
	8.4.1 Security
	8.4.2 Expanded User Testing

	8.5 Scalability
	8.6 Sustainability

	9 Conclusion
	A Screenshots
	B Pipelines
	B.1 CI pipeline web
	B.2 CI/CD pipeline web -preprod
	B.3 CI pipeline backend
	B.4 CI/CD pipeline backend

	C Transcription
	C.1 First Meeting

	D Analysis
	E Navigation
	F Product owner final evaluation
	G User Stories
	H Sprints
	H.0.0.1 S1F1: Homepage (first iteration)
	H.0.0.2 S1F2: Navigation bar (hardcoded first iteration)
	H.0.0.3 S1F3: Upcoming events component (mock data)
	H.0.0.4 S1F4: Your events component (mock data)
	H.0.0.5 S1F5 Location creation
	H.0.0.6 S1F6: Event creation (first iteration
	H.0.0.7 S1F7: Reservation page
	H.0.0.8 S2F2: Volunteer page
	H.0.0.9 S2F7: Event popup, showing information and description of the event
	H.0.0.10 S2F4: Admin dashboard - display events/locations and edit location functionality

	H.0.1 S2F8: Connect navigation bar with auth
	H.0.2 S2B1: Setting up the server and hosting + pipelines
	H.0.3 S2B2: Email service backend
	H.0.4 S3F3: About us page
	H.0.5 S3F4
	H.0.6 S3B4
	H.0.6.1 S3B4-1
	H.0.6.2 S3B4-2
	H.0.6.3 S3B4-3
	H.0.6.4 S3B4-4
	H.0.6.5 S3B4-5
	H.0.6.6 S3B4-6

	H.0.7 S4F1: User test fixes and small text and layout updates
	H.0.8 S4F2: Configuration fix to not expose source code in the browser

	I Design Criteria for the Madboks Platform
	Bibliography

