
Ekstra Bladet Recommender

Project
- Enhancing Ekstra Bladet’s User Engagement with a

Machine Learning-Powered Recommender System for News

Applications -

Project Report

Group 1

Aalborg University

Electronics and IT

Copyright © Aalborg University 2024

Electronics and IT

Aalborg University

http://www.aau.dk

Title:

Ekstra Bladet Recommender Project -

Enhancing Ekstra Bladet’s User En-

gagement with a Machine Learning-

Powered Recommender System for

News Applications

Theme:

Scientific Theme

Project Period:

Spring Semester 2024

Project Group:

1

Participant(s):

Anders Mazen Youssef

Bence Szabo

Louise Foldøy Steffens

Supervisor(s):

Andres Masegosa

Copies: 1

Page Numbers: 150

Date of Completion:

May 28, 2024

Abstract:

This report details the development

of a machine-learning-powered rec-

ommender system to boost user en-

gagement for Ekstra Bladet’s mobile

app. Developed using Agile meth-

ods, the modular system includes

a mobile frontend, model training

component, model-serving API, and

a cloud database. The app tracks

user behaviour, stores data, and em-

ploys LightFM for collaborative filter-

ing to perform real-time article rec-

ommendations. Following configura-

tion changes, the model achieved an

AUC score of 0.9, effectively predict-

ing user preferences. The system’s

design ensures scalability and easy in-

tegration of new models. Ethical con-

cerns about personalised content and

filter bubbles were addressed, and

considerations for future work were

documented. This project delivers a

scalable, modular solution for person-

alised news recommendations.

ii

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

iii

Preface

Aalborg University, May 28, 2024

Anders Mazen Youssef

amyo21@student.aau.dk

Bence Szabo

bszabo21@student.aau.dk

Louise Foldøy Steffens

lfst21@student.aau.dk

iv

Bence Szabo

Bence Szabo

Contents

Preface iv

1 Introduction and Motivation 5

1.1 Initial problem description . 7

2 State Of The Art 10

2.1 Mobile applications using recommender systems 10

2.1.1 Twitter . 11

2.1.2 TikTok . 11

2.2 Recommender systems in news . 12

2.3 Recommender Systems . 14

2.3.1 Content-based filtering . 14

2.3.2 Collaborative filtering . 15

2.3.3 Hybrid approach . 16

2.4 Deployment of recommender systems - Model serving 17

2.5 Model evaluation . 18

3 Analysis 21

3.1 Context - Ekstra Bladet’s data and current recommender system

for web . 21

3.2 Course of action regarding MLOps 23

3.3 Course of action regarding recommender implementation 24

v

3.4 Problem statement . 26

3.5 Requirements . 26

4 Technology stack 28

4.1 Development environment . 28

4.2 Application Technology . 29

4.3 Recommender Technology . 29

4.4 Potential off-the-shelf recommenders 30

4.4.1 DKN . 31

4.4.2 LightFM . 32

4.5 Database . 33

4.6 System architecture . 34

5 Implementation 35

5.1 System architecture in detail . 35

5.2 The Ekstra Bladet News Recommendation Dataset (EBNeRD) . . . 38

5.3 Agile workflow and collaboration with Ekstra Bladet 39

5.4 Sprint 1 . 42

5.4.1 Sprint Planning . 42

5.4.2 Sprint Review . 47

5.5 Sprint 2 . 48

5.5.1 Sprint Planning . 49

5.5.2 Sprint Review . 51

5.6 Sprint 3 . 53

5.6.1 Sprint Planning . 53

5.6.2 Sprint Review . 58

5.7 Sprint 4 . 59

5.7.1 Sprint Planning . 59

5.7.2 Sprint Review . 69

5.8 Sprint 5 . 71

vi

5.8.1 Sprint Planning . 71

5.8.2 Sprint Review . 73

6 Quality Assurance 74

6.1 Evaluation of the system . 75

6.1.1 Module cohesion . 75

6.1.2 Module coupling . 76

6.2 Code quality . 77

6.3 Model Quality . 79

6.4 User validation . 82

7 End product 83

7.1 Mobile Application . 83

7.1.1 Personalised News Feed . 83

7.1.2 Article Interaction . 84

7.1.3 Swipe-able Article Cards . 84

7.1.4 User Behaviour Tracking . 85

7.2 Model Serving . 86

7.3 Model Training . 86

7.4 Cloud Database . 86

8 Discussion 88

8.1 Reflections on the development process 88

8.1.1 The product owner’s reflections on the development process 91

8.2 Technical difficulties . 91

8.3 Future work and scaling . 92

8.3.1 The product owner’s thoughts on future work 92

8.3.2 Leftover PBIs . 93

8.4 Ethical concerns . 96

9 Conclusion 99

1

Project Summary

The project, conducted in collaboration with the Danish tabloid newspaper Ek-

stra Bladet, aims to enhance user engagement on their mobile application by

implementing a machine-learning-based recommender system. The motivation

stems from Ekstra Bladet’s need to retain users and increase engagement, given

the trend towards consuming news on personalised platforms like TikTok and

Twitter. Despite having a recommender system on their website, the mobile app

lacks this feature, prompting the need for a more integrated and engaging mobile

experience.

The report reviews current recommender systems used in mobile applications

and the news industry, highlighting the effectiveness of content-based, collabora-

tive, and hybrid filtering methods. It examines the deployment and evaluation of

these systems, using examples from Twitter, TikTok, and The New York Times.

The focus is on understanding the best practices and technologies to inform the

design and implementation of Ekstra Bladet’s recommender system.

The analysis explores Ekstra Bladet’s data and current recommender system,

noting that the existing model is underutilised on the web platform and absent

on the mobile app. The project’s problem statement emphasises the need for

a highly modular system that supports a machine-learning-based recommender

model to enhance user engagement through a personalised news feed on the mo-

2

bile application.

The chosen technology stack includes GitHub for version control and continuous

integration, FastAPI for model serving, and proposes several types of off-the-

shelf options for machine learning.

The implementation phase follows an Agile workflow, divided into multiple

sprints. Each sprint focuses on different aspects of the system, from develop-

ing the mobile application and integrating the recommender model to refining

the user interface and improving model performance. Key tasks include creating

APIs for model predictions, training models on the Ekstra Bladet News Recom-

mendation Dataset (EBNeRD), and ensuring the modularity and scalability of the

system.

Quality assurance involves evaluating the system’s modularity, code quality, and

model performance. Techniques like static code analysis, unit testing, and user

validation are employed to ensure the system meets the desired standards. The

AUC score is used to assess model performance, with tools like TensorBoard pro-

viding visual representations of training progress.

The discussion reflects on the development process, technical challenges, and

future work. It acknowledges the complexity of integrating a machine-learning

model into a production environment and the importance of maintaining a scal-

able and flexible system. Future enhancements may include refining the rec-

ommendation algorithms, improving the user interface, and incorporating more

advanced machine-learning models.

The report concludes with reflections on the project’s progress and the neces-

sary steps to continue developing and scaling the system. Future work will focus

3

on continuous improvement and ethical considerations to ensure the system re-

mains effective and responsible in its user engagement strategies.

4

Chapter 1

Introduction and Motivation

This project is a collaboration with the Danish tabloid newspaper Ekstra Bladet,

known for publishing content both in print and online. While Ekstra Bladet of-

fers its articles through various mediums, including a mobile application, the app

currently lacks several key features available on its website (e.g. platform-specific

article layout and recommendations under articles) which is seen in figure 1.1.

Users often find it inconvenient as it merely redirects to the browser when ac-

cessing articles, leading to its unpopularity. 9

Ekstra Bladet is one of the most visited news sites in Denmark. [38] Their pri-

mary source of revenue is ads and their premium subscription service, which

means that if they cannot keep the users on the site, they do not earn as much

per visitor. User engagement is vital for their revenue practices.

Considering that a significant percentage of young individuals now prefer con-

suming news content through highly personalised platforms like TikTok, Twitter,

and Instagram [8], Ekstra Bladet’s product developer, Kristoffer Hartwig, envi-

sions the future of news consumption to involve delivering a more tailored user

experience. 9 This entails leveraging machine learning models to predict the ar-

5

(a) The Ekstra Bladet website

(b) The Ekstra Bladet

app

Figure 1.1: Ekstra Bladet’s website and app

ticles a particular user is likely to find engaging, thus enhancing user retention

and engagement within the app.

As there is a shift towards personalised news consumption, machine learning of-

fers a powerful solution for delivering tailored user experiences. These systems

have been proven to work, as on average, an intelligent recommender system

delivers a 22.66% increase in user engagement. [13] By analysing patterns in user

behaviour and preferences, machine learning models can predict which articles

are likely to captivate individual readers. This predictive capability makes ma-

chine learning an ideal tool for news platforms aiming to enhance user engage-

ment and retention. Through sophisticated algorithms, the system can adapt to

evolving interests, ensuring users receive content that resonates with them on a

personal level. This seamless integration of machine learning into news delivery

is central to Ekstra Bladet’s strategy for creating a more engaging app experience.

While a machine learning model in itself is a major component of the system,

6

with a dedicated team behind it such as Ekstra Bladet’s data science team, it

is constantly undergoing improvements. This means that a focal point of this

project should be to provide a system where parts are easily exchangeable. In

broad terms, an overhauled news application should present relevant articles to

app users predicted by a machine-learning model, using Ekstra Bladet’s article

and user interaction data. To support this system, the app should be able to

record and provide relevant data to developers, and this data should be used to

improve future predictions made by a machine-learning model.

1.1 Initial problem description

During the initial meeting with Ekstra Bladet, which included their product de-

veloper, Kristoffer Hartwig and a member of their data science team, Trine En-

gelund, it was established that they do not struggle with onboarding, but rather

keeping their users engaged on the site. 9

As of the writing of this report, Ekstra Bladet’s recommender system is only

used in a small carousel section under a clicked article on the web platform.

Although the data science team was not permitted to share their model, it was

established that a proper recommender model could serve a much greater pur-

pose than what it is currently used for. On the app, the recommender system is

not used at all.

Based on the information gathered during the first meeting, Ekstra Bladet’s setup

looks approximately like this:

7

Figure 1.2: An approximate image of Ekstra Bladet’s setup

The key takeaway from this figure is that the mobile application is not properly

connected to the rest of the system. User interactions are not monitored, and the

existing recommender model is not used. Given that the same machine-learning

model should be used on both the web and in the mobile application, the impor-

tance of modularity is highlighted here. To summarise, the overarching goal of

this project is to provide an improved overall system that is modular and scal-

able, and focuses on implementing a recommender technology to improve the

experience on the mobile platform. As the figure 1.2 above suggests, the mobile

application in this improved system should be on par with the web platform, us-

ing the same system components - thus taking advantage of a machine-learning-

powered recommender to enhance user engagement.

The relevancy of the project’s goal and Ekstra Bladet’s interest in using machine-

learning-powered recommenders is further emphasised by their launch of the

RecSys Challenge 2024 shortly after the start of this project. [12] In this challenge,

participants receive article and user interaction data in the form of a dataset

8

called the Ekstra Bladet News Recommendation Dataset (EBNeRD). Their task is

to create the best-performing machine learning model.

9

Chapter 2

State Of The Art

Understanding and implementing state-of-the-art recommender systems is cru-

cial for delivering a personalised user experience in line with current standards.

This chapter explores the use of recommender systems in mobile applications

and their specific application in the news industry. Additionally, it covers vari-

ous types of recommender systems, their operational aspects (MLOps), and per-

formance monitoring techniques. Establishing these fundamental concepts and

exploring current applications should aid the development team in mapping out

the most important requirements for a solution.

2.1 Mobile applications using recommender systems

From the initial meeting with the product owner at Ekstra Bladet, it was clear

that their vision for their future on mobile platforms would be heavily inspired

by popular social media platforms such as Twitter and TikTok. 9 This aligns well

with a study [24] from 2023 that concluded that half of its participants, who were

within the age range of 18 to 65, use social media as one of their main sources of

news. Furthermore, 69% of the participants in this segment were within the age

range of 18 to 29 years. The project’s product owner also mentioned this demo-

graphic of young adults as a major focus group for their future mobile platform. 9

10

With this information in mind, it seemed important to understand how these

popular social media platforms work in terms of their recommendation systems.

The purpose of doing so could assist in identifying current trends and practices,

while also understanding user expectations and preferences as these social media

apps are popular and generally well-received.

2.1.1 Twitter

In a Twitter blog post, the three main stages of their recommendation pipeline

are described. [56] In the first stage, a machine learning model most likely

scoring high on the accuracy of a large number of recommendations is used

to find candidate items (posts). Secondly, a different model presumably one that

performs better in top recommendations is used to rank the candidate items.

Thirdly, heuristics and filters are applied to remove items from sources the user

has blocked or other items which might be considered inappropriate by the user.

Half of the initial candidates originate from sources the user is familiar with

(e.g. follows or has interacted with), while the other 50% are from sources un-

familiar to the user. These items are also embedded and grouped into similar

communities to determine which items and users are similar to the current user.

Although the technology itself is not explicitly described, grouping users into

"communities" strongly suggests a collaborative approach is at play. Most likely,

it is a hybrid approach. Different types of approaches are described in greater

detail later in this chapter.

2.1.2 TikTok

Developers have also made a similar blog post at TikTok. [23] From this, it seems

their pipeline is similar to the aforementioned one on Twitter. However, after

ranking the items which are deemed appropriate to show up on a user’s feed,

11

they are checked for similarity. If two items are too similar, which could be if

they use similar audio or imagery, they are replaced with a new item to ensure a

greater variety in the content the user sees. To achieve this, the algorithm must

take content properties into account, which implies the use of content-based fil-

tering.

Examining these social media apps helps develop strategies to improve user re-

tention and satisfaction with the new mobile application for Ekstra Bladet. This

enhanced user engagement could be achieved by taking inspiration from this

hybrid approach, which combines familiarity and exploration while ensuring

content variety.

2.2 Recommender systems in news

Personalised content is widely applied in entertainment because increased en-

gagement longevity and retention mean more clicks and time spent on an appli-

cation or website. Similarly, news sites aim to achieve these goals, so applying

the same technology is theoretically beneficial despite the change in context.

The New York Times published an article in 2021 which describes their, at the

time, newly integrated personalisation algorithm. [53] Although a detailed expla-

nation of their pipeline is not provided, which was the case with the previously

mentioned blog posts by Twitter and TikTok, 2.1 their main concerns regarding

implementation are documented.

The New York Times describes their approach as "using recommendation algorithms

to highlight articles that are particularly relevant to our readers". [53] This is done with

a contextual approach, 9 as they consider a reader’s geographical region, or read-

ing history when judging which article would apply to a reader’s interests.

12

Since the initial implementation of their recommendation algorithm, it has been

expanded to include more contextual information according to the documenta-

tion. [53] The reader’s device type, the time of day, and the number of articles

viewed in a particular news section are all used to predict their interest in an

article. An important note is that The New York Times found that the contextual

information needed depends on the type of article that is being recommended.

The implementation itself requires two types of data: the articles read by the

user and the articles shown to the user. The model is re-trained on the most re-

cent version of this data and re-deployed every fifteen minutes. Additionally, the

time frame of this contextual information is from the past 30 days. Although not

explicitly stated, retraining at such frequency most likely also requires a robust

monitoring system and a dedicated team, similar to Ekstra Bladet’s data science

team.

It should be noted that there is not a lot of publicly available information on major

news sites using machine learning-powered recommendation systems. The likely

reason is that already documented problems created by providing personalised

content such as filter bubbles 8 could have a destructive effect on a brand’s image,

given that a common quality to strive for as a well-respected news publication

is providing impartial and societally relevant information to the greater public.

The New York Times’ context-based filtering does not rely on "communities" nor

limits what information a user is presented with based on the properties of their

previously read articles. Thus, it can be considered a safe choice for avoiding the

common dangerous side effects of recommenders - although most likely not as

effective as collaborative and/or content-based approaches.

13

2.3 Recommender Systems

Examining some real-life applications of recommender systems, it became clear

that based on the context of the system, developers must make some pivotal

choices regarding the type of recommender system that is implemented. Other

than exploring state-of-the-art standards, the development team must also estab-

lish a proper understanding of the different types of models.

Firstly, before exploring the intricacies of recommender systems, an essential

understanding of what a recommender system does should be established. In

the context of machine learning, a recommender system learns from data to pre-

dict what a user is looking for among item options, even in instances where the

amount of options is exponentially growing. [34]

The criteria on which these predictions are based could, for example, be past

purchases, search history, demographic information, etc. Many algorithms and

techniques can be used to achieve this goal, but they are normally classified into

three main categories; content-based filtering, collaborative filtering, and hybrid

systems. These categories are explored to find the appropriate one for the issue

at hand.

2.3.1 Content-based filtering

In content-based filtering, the predictions made by the recommender system are

based on the properties of items a user has interacted with. In the case of arti-

cles, these could be topics, named entities, sentiment scores, etc. By including

attributes and keywords associated with the articles, the model can create better

predictions on similar content. [36]

In such a system, user profiles contain the user’s interactions with the items

14

in the database. Attributes/keywords that appear in multiple interactions are

weighted higher, as the system now perceives these as more important because

they align more with the user’s interests.

Content-based filtering has its advantages, such as being independent of other

users’ data. This is beneficial when working with limited user data, or when

working in niche markets. Additionally, it is also highly personal, as it focuses

on the individual user and their interactions with the items in the database. [36]

However, content-based filtering also has some disadvantages. For example,

when recommendation systems end up being too focused on the user’s past

behaviour, their experience can be negatively impacted. The emphasis on past

behaviour should be balanced with the rate at which new items are introduced.

Otherwise, the system will be overly focused on previous trends while the user

tries to engage with new content. The onboarding phase is also important to

perform correctly when implementing content-based filtering, as it is difficult to

gather the user’s initial preferences otherwise - resulting in a cold start problem.

A cold start problem arises when the system lacks sufficient information to make

inferences about new users or items. [61]

2.3.2 Collaborative filtering

Collaborative filtering addresses some of the limitations of content-based filter-

ing, more specifically, it addresses the issue regarding insufficient amounts of

user interactions during the early stages of the user experience. This is tackled

using serendipitous recommendations, meaning that the system recommends an

item to one user, based on the interests of another similar user. Collaborative

filtering uses similarities between users and items simultaneously to provide rec-

ommendations, which comes with its own set of advantages and disadvantages.

[10]

15

An important positive aspect of using collaborative filtering is the fact that there

is no need for metadata on the items within the database. This is because col-

laborative filtering only focuses on the interactions between the users and items.

Additionally, it also mitigates the aforementioned issue regarding the onboarding

phase in content-based filtering. This is because the system can still provide rec-

ommendations for new users, even when there is limited historical data available

as it primarily creates the recommendation based on the behaviour of other users.

A disadvantage of using collaborative filtering is the risk of sparsity, which can

occur if there are many users and items in your system, but without interactions

between them. In such a case, the recommendations may risk being inadequate.

Finally, a collaborative filtering recommendation system also tends to be biased

toward popular items as other users gather toward those naturally, influencing

other users in the same direction. [10]

2.3.3 Hybrid approach

Both content-based filtering and collaborative filtering offer unique advantages

and face distinct challenges. While content-based filtering excels in personalisa-

tion and independence from other users’ data, collaborative filtering leverages

user interactions for serendipitous recommendations and mitigates the onboard-

ing phase challenges. Hybrid recommender systems combine the strengths of

both content-based filtering and collaborative filtering to mitigate their respec-

tive limitations and enhance overall recommendation quality.

There are several ways to implement a hybrid approach - the most common

ones are described in this paragraph. The system can use a weighted approach

where the content-based scores and collaborative filtering scores are weighted

and aggregated to produce final recommendations, a cascading approach where

16

one recommender system refines the output of another, or a switching approach

where the system switches between different algorithms based on contextual

variables.

Based on evaluation results in scientific papers [6] [3], content-based filtering and

hybrid approaches give the most outstanding results. The most optimal solution

in the context of this project is likely a hybrid approach, but the possibility of

such a system largely depends on the available data and the resources allocated

for working on the model.

2.4 Deployment of recommender systems - Model serving

Once a model has been trained tested, and is considered ready to enter produc-

tion, it means the model is ready to be served. Rather than a ship-and-forget

pattern, machine learning systems require continuous improvement through it-

eration loops. A proper MLOps setup enables model lifecycle management and

improves collaboration on an organisational level. [58]

The simplest way of serving a model is with model embedding, meaning that

the model is stored and used on the device itself. It is generally regarded as

a bad practice because it comes with massive client-side performance loss, any

changes to the model require client-side updates, and it is not a scalable design.

[58]

The prevailing approach currently involves deploying models through model-

serving APIs or offering them as a service. This architecture divides the appli-

cation from the model using an API, streamlining model version control and

facilitating seamless updates through phased rollout processes, which do not di-

rectly affect users. To keep such a system loosely coupled, it is essential to keep

17

the application, database, model training, and model serving layers separated

and modular. When serving a model, it is a good practice to enable continuous

performance monitoring and easy switching between models. Implementing a

model registry is also a good practice. A model registry is in simple terms a

library of models stored independently from the API. [58]

Figure 2.1: A general example for a model serving setup [58]

State-of-the-art model serving is often achieved using common API solutions like

FastAPI [46] or Flask [47]. As an alternative, there are all-in-one solutions with

user-friendly interfaces available out of the box. MLFlow [51] and Kubeflow [48]

are examples of such tools, designed and priced for larger organisations.

2.5 Model evaluation

To find out whether a model performs well or not, and to compare vastly dif-

ferent models easily, models must be evaluated using universal metrics. As with

most machine learning models, the first step in model evaluation is to define

a training set and test set. The training set is a subset of data used to train

the machine learning model. The model learns patterns, user preferences, item

18

characteristics, and interactions from this data. The test set is a subset used to

evaluate the trained model’s performance. It serves as unseen data, enabling an

assessment of how well the model generalises to new, unseen instances. Typi-

cally, the data is split into training and test sets using an 80/20 - 70/30 ratio. This

means that 70-80% of the data is reserved for training and the remaining 20-30%

is used for testing. [4]

It is generally a good practice to use cross-validation, e.g. k-fold cross-validation,

to ensure the model’s performance is robust and not overly dependent on a par-

ticular train/test split. It is very important to avoid data leakage, which can

occur if the splitting process is faulty and the model is trained on test data. Data

leakages can lead to overly optimistic performance estimates. [40]

Once a model is trained on the training set, an appropriate evaluation metric

should be used with the test set to provide meaningful evaluation metrics.

AUC is the industry standard evaluation metric for machine-learning-powered

binary classification recommender systems. [21] AUC stands for Area Under

the (ROC) Curve. The ROC curve is a plot of the true positive rate (sensitivity)

against the false positive rate (1-specificity - the probability that a true negative

will test positive) for different classification threshold values. The threshold value

is a decision point that separates these classes - click or no-click in the context of

this project. If the output of the model (e.g., predicted probability or predicted

score) for a given example is above the threshold, the example is classified as

positive; otherwise, it’s classified as negative. AUC quantifies the overall per-

formance of the model across all possible classification thresholds and represents

the entire two-dimensional area underneath the entire ROC curve. A perfect clas-

sifier would have an AUC of 1.0, while a random classifier would have an AUC

of 0.5 meaning it performs no better than chance. [21]

19

Providing several evaluation metrics is always a good idea. The F1 score is also

commonly used as a secondary evaluation metric to account for false positives

and false negatives (it is calculated using both precision and recall). Addition-

ally NDCG (Normalised discounted cumulative gain - commonly NDCG@5 or

NDCG@10), provides a score between 0 and 1 depending on the quality of the

top recommended items. Although NDCG is most commonly used with search

engines, it is still a popular evaluation metric in the domain of recommender

systems. [15]

20

Chapter 3

Analysis

Having explored real-life implementations and established the central compo-

nents of recommender systems, the development team is now ready to make

educated choices and document the requirements for the most essential parts of

the system, taking the context of Ekstra Bladet’s situation into account. This sec-

tion culminates in an overarching problem statement used as a guiding principle

for what the upcoming work should contribute to providing a solution for, and

big-picture requirements for the end product.

3.1 Context - Ekstra Bladet’s data and current recommender

system for web

Although the development team has not yet been authorised to access Ekstra

Bladet’s data, the information gathered during initial meetings strongly suggests

there is a good amount of article and behaviour data to work with. 9 Knowing

this, the development team is not hindered in taking either a content-based fil-

tering approach, or a collaborative-filtering approach, and even possibly scaling

such a model into a hybrid.

21

It has now been confirmed that the development team will not gain access to

Ekstra Bladet’s current recommender model or learn the specifics of its imple-

mentation. However, it has been documented that the model is used exclusively

on the web platform to select relevant articles for a carousel view beneath an

already clicked article. This information already opens up a lot of possibilities

as to how user experience could be enhanced using a recommender on an entire

application, rather than on a small subsection of the product. Therefore, the main

focus lies in providing relevant content for a "for-you"-page, or in other words,

the main feed the user sees when opening the application. When working with

such a feed, both content-based and collaborative approaches are reasonable, and

providing an entirely new personalised feed would, arguably, give the most value

to the product - implementing machine learning where it matters the most.

Taking the RecSys Challenge [12] into account, with more and more powerful

recommenders most likely emerging during the project’s lifetime, although the

development team’s choice of recommender technology must be reasonable, pro-

viding an improved overall system should receive more focus than maximising

model performance.

Based on research and the approximate mapping 1 of Ekstra Bladet’s current

system, it is clear that the recommender system requires its parts to be inde-

pendent of, or at least only loosely coupled to the application. Recommender

systems are computationally intensive, especially during training and evalua-

tion. Furthermore, when a model is successfully trained and put into action, it

should be usable with both the web and mobile platforms. Thus, it is most log-

ical to keep model training and serving functionalities as separate components

independent from each other. Lastly, the web and mobile platforms should use

the same database for user interaction and article data, so it should receive its

independent component as well.

22

Having established that the system must be highly modular, requiring largely

independent components, the development team is now ready to explore the

specifics of how such a system can be implemented in practice.

3.2 Course of action regarding MLOps

Building on the findings from the previous section, attention is now turned to the

operational aspects of managing machine learning models, commonly referred to

as MLOps. Simply put, MLOps focuses on streamlining the end-to-end process

of deploying, monitoring, and maintaining machine learning models in produc-

tion environments. [45]

In the context of Ekstra Bladet’s recommender system, MLOps is crucial for en-

suring that the model training and serving components are scalable and easily

modifiable or replaceable (more details to follow). The primary purpose of the

model training component is to continuously improve the recommendation algo-

rithms by leveraging new and improved models, while the serving component

is responsible for delivering real-time recommendations to users across web and

mobile platforms.

Given that model training is likely to be highly specific to the chosen model

architecture, the model serving layer will receive more attention in terms of mod-

ularity and scalability. This should ensure that the serving layer can efficiently

handle diverse and potentially evolving recommendation models.

Regarding state-of-the-art model serving solutions, experiments with MLFlow

and Kubernetes using example models trained on the MIND dataset [7] (see ap-

pendix 9 for selection rationale) quickly revealed that the free tiers of these tools

23

lack many essential features required for production use. Therefore, model serv-

ing is planned to be done by hosting an API and eventually creating a Docker

image and hosting that if possible. As formerly described, API solutions are com-

mon and provide a good starting point for multiple components to communicate

with each other.

Tackling the issue of constantly receiving new articles and interaction data means

that the API should have functionalities for partial retraining and loading new

data from a remote database. Furthermore, it should be relatively easy to switch

models out and evaluate models in production to monitor performance.

It is worth noting, that the importance of maintaining the model performance

requires user interaction tracking - a feature not directly related to MLOps, but a

must-have element of the product.

3.3 Course of action regarding recommender implementa-

tion

Now that the model-serving part of the system has been outlined, the develop-

ment team must decide on exactly what machine learning model would make

sense to work with. The consensus is that a better-performing model is naturally

a preferable option, but the first and foremost priority is to have something that

works, which can be changed out for better options in the future - potentially the

winner model of the RecSys 2024 challenge [12].

The development team is faced with an initial choice between content-based fil-

tering and collaborative filtering approaches - as for now, hybrid approaches are

considered a possible future enhancement because of the complexities they come

with. 2

24

Based on performance metrics with the MIND dataset [7], one most likely very

similar to Ekstra Bladet’s dataset, priority is given to well-performing off-the-

shelf content-based filtering options like DKN, LSTUR, and NRMS. [6] They are a

good fit for the issue at hand and are expected to provide the best results without

any complex modifications. While selecting one of the aforementioned off-the-

shelf models has several advantages, for instance, that they have been proven to

perform well with similar data, scaling these models would require a thorough

understanding of the inner workings of the chosen model. Additionally, most

publicly available implementations do not consider using any of these models in

a live production setting, which could propose very hard implementation tasks

for the developers.

As an alternative option, if content-based filtering models are not production-

ready or prove too difficult to tackle, there are numerous off-the-shelf collab-

orative filtering-based models available, with implementations ranging to pro-

duction environments. Based on the documentation, performance, and available

educational resources, LightFM [50] could be a very good candidate for this pur-

pose (more about it later 4).

To summarise, a better-performing model (content-based) is certainly preferred,

but the point of this project is to provide a complete software system, not the

perfect machine-learning model. If value delivery is greatly reduced by imple-

mentation difficulties, the development team should be quick to adapt and switch

to a simpler approach - likely a worse-performing off-the-shelf solution.

25

3.4 Problem statement

The analysis and decisions outlined above lead to the core challenge the devel-

opment team must address encapsulated in the following problem statement:

Enhance the user experience and improve user engagement on Ekstra Bladet’s

mobile application by developing a highly modular software system that sup-

ports a machine-learning-based recommender model. Provide a complete system

and display a personalised news feed to users on an overhauled mobile applica-

tion. Prove the success of the machine learning with an adequate performance

evaluation process using relevant metrics.

3.5 Requirements

The problem statement defines the goal of the project, guiding the development

team toward developing a comprehensive recommender system. To achieve this,

the essential requirements are outlined encapsulating the tasks necessary for

building the system.

The solution must be a complete system including independent components for

model training, model serving, database, and application. It has been established

that machine learning is a continuously developing field, and given that the cur-

rent MLOps and database setup of Ekstra Bladet has not been disclosed, the

plug-and-play modularity aspect should always be kept in mind when develop-

ing the solution. The focus is not as much on generating the perfect recommender

model, but on creating a state-of-the-art platform for recommender systems to be

used with.

The must-have components of a recommender system described above are en-

26

tered into the product backlog. Note, that these PBIs are subject to be broken

down into smaller PBIs to ensure that tasks are of manageable size. PBIs are

further specified once the technical stack has been established (see next chapter

4).

Considering frontend requirements, Ekstra Bladet has provided a Figma file to

use as a design guide. 9 From this design, an initial list of PBIs is added to the

product backlog as well.

27

Chapter 4

Technology stack

With a clear understanding of the problem statement and the essential require-

ments for a state-of-the-art recommender system, the next logical step is to ex-

plore the specifics of how these components will be built. The following section

details the technology stack chosen to implement the proposed system.

4.1 Development environment

GitHub will be used for product backlog management, version control, issues,

and continuous integration, as it is a state-of-the-art solution that all develop-

ment team members are experienced with. GitHub’s projects feature allows for

setting sizes and priority labels on PBIs which are grouped into backlog, ready,

in-progress, in-review, and done columns. Product backlog items are also linked

to pull requests. GitHub actions are implemented for running automatic tests

before merges such as linting. Any dependencies and bugs are documented as

issues. During development, feature branching will be used, and each feature

branch is closed upon merging into the development branch. At the end of each

sprint, the development branch is merged into the master/main branch. For each

pull request, a template should be filled out containing a description, screenshots

(if relevant), corresponding backend or frontend branch, changes, related issues,

28

and a checklist.

The quality control checklist is the following:

• Code has been tested locally and passes all relevant tests.

• Documentation has been updated to reflect the changes, if applicable.

• Code follows the established coding style and guidelines of the project.

• All new and existing tests related to the changes have passed. (If one test

fails because the test is broken, the function works as intended. The test

has been ignored.)

• Any necessary dependencies or new packages have been properly docu-

mented.

• Pull request title and description are clear and descriptive.

• Reviewers have been assigned to the pull request.

• Performance impact of the changes has been evaluated, if relevant.

For setting up the development environments in both frontend and backend,

readme files are written and continuously updated in the repositories.

4.2 Application Technology

For app development, React Native, NodeJS and Expo are used, because they are

all well-maintained and documented, have lots of powerful libraries, and provide

a headstart in getting an application to work on both IOS and Android.

4.3 Recommender Technology

Jupyter Notebooks and Google Colab will be used for model development and

training. When working on a local Jupyter notebook, Conda will be used as an

29

environment manager and a package manager. Working with Conda simplifies

installing and managing a wide range of Python and non-Python packages, li-

braries, and dependencies. The development team had previously experienced

environment-related issues, so starting with a clean sheet and a good package

management system makes sense.

For data preparation, sanitisation and manipulation, the Pandas library for Python

will be used, as it is a powerful well-maintained tool all developers are familiar

with. Pandas is generally good for working with tabular data in analysis and has

many useful operations for data preparation and sanitisation.

FastAPI will be the development team’s go-to tool for hosting an API for model

serving. This is an option that was already discovered to be popular for this

purpose during research. 2.4 Furthermore, the developers have already worked

with FastAPI, which means a small headstart as well. For live-testing the API,

Postman will be used, which is also a standard option the developers are familiar

with. From an organisational perspective, MLFlow could be a better option, but

as previously described 2, implementing it would both be financially costly and

the rest of the system would be forced to be designed around it.

4.4 Potential off-the-shelf recommenders

As mentioned before, in the context of this project it makes most sense to go for

a well-performing off-the-shelf recommender. Different types of recommenders,

namely content-based collaborative, and hybrid approaches were previously de-

scribed. This section documents the results of selecting the most suitable ones

for this project.

To know what opportunities there are for off-the-shelf recommenders, and what

30

the most favourable choices would be, some of the most promising content-based

filtering models and an easy-to-implement collaborative model were researched

and documented.

4.4.1 DKN

The go-to off-the-shelf content-based filtering model of this project is DKN - Deep

Knowledge-Aware Network for News Recommendation. This is the first choice

because of its performance compared to similar content-based news filtering rec-

ommender systems documented in Wang et al.’s paper.[6] Furthermore, DKN is

a content-based deep model specifically made for CTR (click-through-rate) pre-

dictions - exactly what is needed in this project.

DKN is a deep learning model incorporating data from knowledge graphs for

recommendation purposes. [52] A knowledge graph is a data model that is used

to explore relationships and identify logical connections in multiple datasets.

Observing performances and implementation, other potential candidates for content-

based filtering could be LSTUR (Long- and Short-term User Representations) and

NAML (Neural News Recommendation with Attentive Multi-View Learning). In

short, LSTUR captures users’ both long-term and short-term preferences and uses

recurrent neural networks. NAML uses an attention mechanism to dynamically

weigh the importance of different views (e.g., user features, news article fea-

tures) during the recommendation process. Both of these options give promising

results with the MIND dataset. [6] These recommenders are not explored further

for now, but are kept as possible alternatives if implementing DKN in the system

is not feasible.

31

4.4.2 LightFM

LightFM has been determined to be the safest choice for an off-the-shelf rec-

ommender model. Other than proper documentation, maintenance, and solid

community support, LightFM performs relatively well compared to other collab-

orative filtering and even content-based options. [6]

LightFM is a CPU-based Python implementation of a Factorisation Machine rec-

ommendation algorithm. [49] LightFM does not currently have a GPU-based

implementation, so training times are expected to be slower than other potential

options. [50] LightFM being a factorisation machine model means that it is a

supervised learning algorithm (works with labelled training data) designed to

capture interactions between features within high dimensional sparse datasets.

Factorisation machines are most commonly used for classification problems, but

can also be used to tackle regression tasks. Click prediction systems are a prime

example of factorisation machine models for binary classification. [43]

LightFM can be used as an interface to handle both collaborative and content-

based filtering. Although the most popular use of LightFM is with the WARP

loss function, which is a popular choice for collaborative filtering tasks. Simply

put, WARP is used to optimise recommendations based on the relative ranking

of items. WARP is especially useful when working with binary input describing

whether or not an interaction has taken place - which also makes sense for this

project. Due to the vast amount of available resources for WARP implementation

and the impression that it fits well with the context of the project, this seems to

be the best option for a fast workflow.

In LightFM, users and items are represented as linear combinations of latent

factors of their content features. Latent factors are a transformation of the data

32

points to "explain" patterns in the observed data. In recommendation systems,

latent factors can represent the underlying characteristics of users and items.

These representations produce scores for every item for a given user, and an

item receiving a higher score means that the item is likely to be more relevant to

the user. A representation for each user/item combination is a linear weighted

sum of its feature vectors. LightFM operates based on binary feedback, so feed-

back is normalised into two groups (click/no-click in this case). Since LightFM

is constructed to predict binary outcomes, it uses a sigmoid function. [49]

LightFM also has some specific constraints compared to machine learning stan-

dards. LightFM expects training and testing sets to have the same dimension,

therefore conventional test split will not work. To tackle this, LightFM has its

unique method for data splitting. Note that this method does not guarantee that

all user-item interactions in the test set have historical interactions in the training

set. [49]

4.5 Database

Supabase will be the developers’ choice for cloud data storage. Its free tier will

not propose any severe limitations for the developers, and relations between

tables can be defined, unlike in MongoDB. Relational databases are preferred

when working with structured data. The data received from Ekstra Bladet is al-

ready structured so it is good practice to keep using their structure and type of

database.

Functions for user behaviour instrumentation will be written by the develop-

ers. Amplitude [aplitude] was explored as a possible off-the-shelf option, but

free tiers proposed too many limitations and front-end design constraints.

33

4.6 System architecture

The product in this report is built with a layered system architecture in mind.

In a layered system architecture, layers handle different operational aspects of

the system. There are various sub-modules inside the layers to aid the layer’s

purpose in the system. [2]

The primary reason behind choosing layered architecture is its modularity. The

modularity with sufficiently loose coupling brings improved independence be-

tween the different components, which is beneficial since system components are

meant to be easy to replace or modify without affecting other areas.

Figure 4.1: The system’s layers where the arrows indicate requests

The structure of the system’s layers is shown in the figure 4.1. The layers are;

application, model serving, model training and data layer. Usually, the commu-

nication, via requests, between the various layers is hierarchical and a layer can

only depend on its neighbour. The reason for this is to gain the full effect of the

flexibility and modularity that layered system architecture provides. When there

are fewer dependencies between each layer, a system presents a better foundation

to replace and change layers if needed. In this project, the communication be-

tween layers is more dependent than only relying on their closest neighbour. The

reason is that the application layer can both send a request to the model serving

layer and data layer depending on what type of request it is sending. [27] [57]

34

Chapter 5

Implementation

In previous chapters, the problem was thoroughly researched, general require-

ments for a potential solution were outlined, and those requirements were trans-

lated into specific technologies. With a clear plan in place and a firm understand-

ing of the project’s overarching goals, the actual development of the product can

now begin.

In this chapter, a detailed overview of the system architecture and a brief run-

down of Ekstra Bladet’s EBNeRD dataset is first presented. The Agile workflow is

described followed by a documentation of all main developments during sprints.

The report highlights the most important items addressed in each sprint, while

the remaining items are included in the appendix. The purpose of presenting the

system architecture before the implementation process is to provide context for

the documented developments.

5.1 System architecture in detail

In the previous chapter, the type of system architecture used in this project was

explained. 4.6 Now, the exact details of how the system architecture is imple-

mented are presented. A diagram of the whole system is displayed in figure 5.1

35

to get a closer look at the different components placed in the layers.

Figure 5.1: System architecture

Application Layer

The client in the application layer currently represents a mobile device, but can

easily be extended to support web display. This layer starts the process of com-

munication between the layers by either requesting data from the model serving

layer - which contains the model object used for providing recommended articles

- or storing user interaction data in the data layer. Both are done by the use of API

requests and responses. The developers’ self-defined FastAPI instance is used in

the model serving layer and Supabase’s provided API is used to communicate

with the database in the data layer.

Normally, the client only handles the UI and is often placed inside a presenta-

36

tion layer. In this case, the application and presentation layers have been merged

since a fair amount of business logic is stored on the client side. Therefore, the

client and its business logic represent the application layer in this context. This

approach limits the modularity since it will take a lot of effort to change the

client and reallocate the business logic elsewhere. The same limitations apply to

the dependency on the data layer.

Model Serving Layer & Model Training Layer

Model serving and training layers are on the same hierarchy in the system. This

is because the model serving layer can send a request to either the data layer or

the model training layer independently.

The model serving layer, via an API, handles the requests from the application

layer to get predictions from the trained machine learning model object. Fur-

thermore, the API handles the import and export of model objects to be used for

predictions and, lastly, the request for articles matching the article IDs obtained

by the model’s predictions from the data layer.

The arrow from the model serving layer to the model training layer is not solid,

because the current system setup does not perform a request as intended. Get-

ting a model into production is a manual process with the use of a Google Colab

Notebook, where the model is trained and evaluated, and from which the trained

model is exported as a joblib file. This file is manually inserted into the model

folder in the model serving project locally. The reason for this is that the LightFM

model imported from the recommender’s GitHub repository uses some tools that

are readily available on Linux, but not on Windows or Mac. Workarounds were

attempted but they always resulted in kernel failures, so to avoid slowing de-

velopment velocity, the model training work was decided to be kept on Google

Colab.

37

Ideally, the model serving layer could send a request to trigger the training of

a new model in the model training layer. The model training layer would then

request the data layer to get the latest user interaction data. After the training

is done, the newly trained model would be returned to the model serving layer

or put into a model registry. Here it should be up to the developer to choose

if they want to utilise the most stable and highest-performance model available

in production or observe more performance metrics before switching the models

out.

Data Layer

The data layer consists exclusively of elements made by external parties. It in-

cludes a cloud relational database which has an API. The API can send a POST

or GET request to either place data inside one of the database’s tables or get data

from a table in JSON format.

The request and response data formats, respectively SQL and JSON, are widely

used when working with databases. Therefore, finding an alternative database

provider with the same format might be fast, and can result in spending a rel-

atively small amount of time to replace the existing dependencies to integrate

with it. [62] [16]

5.2 The Ekstra Bladet News Recommendation Dataset (EBN-

eRD)

The EBNeRD dataset is created by Ekstra Bladet to assist in the research in news

recommendation research. [11] It is available in different sizes, namely demo,

small and large. The small dataset is primarily used for this project, and the

demo dataset is at times temporarily used for testing purposes. The small dataset

38

was chosen by comparing results and training times between all three sizes. Al-

though the large dataset results in a slight increase in model performance, the

tradeoff in training time is too large to make it a viable option.

The small dataset includes 20738 articles with textual content features such as

titles, abstracts and bodies. The dataset also comprises 15143 users, and 232887

impression logs of user behaviours recorded on Ekstra Bladet’s website. Users

and their interactions are split up into behaviour and history data files, where the

behaviour data consists of a list of individual interactions and their properties,

and history encompasses a unique user total interactions into one row.

It is worth noting that during the first sprint, the RecSys Challenge was not

yet made public, so it was uncertain whether the development team would be

able to access this data. Therefore, similar publicly available datasets were also

explored to train and validate a potential recommender model. 9 During the first

sprint, the MIND (Microsoft News) dataset was temporarily used as a stand-in

for EBNeRD.

5.3 Agile workflow and collaboration with Ekstra Bladet

The project workflow applies some, but not all, fundamental aspects of Agile

software development. This decision was made because Agile practices provide

a good framework for continuous value delivery to the project’s stakeholders

and keep the priorities and development steps on track working towards con-

crete goals.

The product owner of this project is Kristoffer Hartwig, who works as a product

developer at Ekstra Bladet. Hartwig’s primary responsibilities include keeping

the product vision on track representing stakeholder needs, managing priorities

39

and assisting in defining product backlog items. Additionally, they have the final

word in accepting product backlog items.

The management role in this project is fulfilled by Andres Masegosa, associate

professor at the Department of Computer Science at Aalborg University, and

the development team’s supervisor. Masegosa’s primary responsibilities include

providing guidance and direction to the development team, thus ensuring con-

tinuous improvement and value delivery.

The development team consists of the authors of the report - Software students

from Aalborg University Copenhagen. The development team’s responsibility

is to continuously deliver valuable increments while ensuring sufficient trans-

parency and common understanding with other key figures. Considering that

all team members are familiar with Agile principles, it was decided that a Scrum

Master-like role is not required.

The development process consists of two-week sprints. Each sprint starts with a

sprint planning session using product owner and supervisor input to solidify the

main goal and product backlog items. During development, the development

team holds daily meetings internally to provide progress updates. After the 2

weeks of development, all PBIs considered done - see Definition of Done below

- are presented to and discussed with the product owner and supervisor in the

form of a sprint review. During sprint reviews, feedback considering the overar-

ching goal and concrete PBIs for the next sprint is collected and systematically

documented. If needed, a sprint retrospective is held discussing any issues with

the development process or events.

40

The definition of done is defined as the following:

1. Code has been tested locally and passes all relevant tests.

2. Documentation has been updated to reflect the changes, if applicable.

3. Code follows the established coding style and guidelines of the project.

4. All new and existing tests related to the changes have passed.

5. Any necessary dependencies or new packages have been properly docu-

mented.

6. Pull request title and description are clear and descriptive.

7. Reviewers have been assigned to the pull request.

The implementation of the product follows Scrum principles and is therefore

documented in sprints. These are iterative development cycles which follow a

specific structure, with the main goal being to implement the items from the

product backlog while also adhering to the definition of the done. The items

are defined in coordination with the product owner, Kristoffer Hartwig, and the

project’s supervisor, Andres Masegosa. It is crucial to be transparent and keep

the product owner in the loop because they are responsible for the overall prod-

uct vision, accepting PBIs, and providing meaningful feedback. The supervisor’s

expertise in machine learning is pivotal for making meaningful technical progress

on the product with good velocity and keeping the project on track. The struc-

ture is maintained by including the key activities of a Scrum framework, these

are Sprint Planning, Sprint Review and Sprint Retrospective.

The purpose of documenting these sprints is to track the progress of develop-

ment and provide a reference for future iterations and improvements. Further-

more, each sprint has a clear overarching goal it works towards, defined in col-

laboration with the product owner’s needs and supervisor’s advice. Every new

41

contribution must therefore be made with this goal in mind.

For tracking PBIs, they receive their unique identifiers, formulated as a concate-

nation of their sprint number, and either the front or backend number assigned.

For example, S1F2 is the second frontend PBI from sprint 1, and S2B3 is the third

backend PBI from sprint 2.

5.4 Sprint 1

In this first sprint, the goal was to get all crucial elements of the system up

and running. This entails creating a React Native application according to the

Figma design provided by the design team at Ekstra Bladet and implementing

a machine-learning model with the data provided by Ekstra Bladet. Combining

these two fundamental elements of the system, the application should display

content which is provided and recommended by an external machine learning

model through API calls. Note, that the quality of the machine learning model

(evaluated as AUC score), is not considered important as of now.

5.4.1 Sprint Planning

The planning phase of this sprint included a meeting with the product owner to

ensure a good common understanding of the sprint goal. Currently, the product

owner prioritises and has a better understanding of requirements considering the

application frontend, thus the backend (primarily machine-learning related) re-

quirements were formulated following the supervisor’s guidance. For each PBI,

a new branch and at last PRs are created and they are labelled either "In backlog",

"Ready", "In progress", or "Done" corresponding to the progress.

The following is a list of the backlog items addressed during this first sprint.

The items with the most significance, which are the ones highlighted in the list,

42

are expanded upon in this section. The rest of the completed PBIs from this

sprint can be found in the appendix. 9

Front-end items

• S1F1: As a user, I want to have a non-personalised news feed.

• S1F2: As a user, I want to have a personalised news feed.

• S1F3: As a user, I want a header on my personalised feed.

• S1F4: As a user, I want to be able to read a news article in the app.

• S1F5: As a user, I want to be able to see if I’m a plus member or not.

• S1F6: As a user, I want to navigate from the news feed to an article by

tapping on it.

• S1F7: As a user, I want to see more articles when refreshing the news

feed or reaching the bottom of my news feed.

• S1F8: As a user, I want to see a loading screen with Ekstra Bladet’s logo

when opening the application.

• S1F9: As a user, I want to see the correct fonts when using the app.

• S1F10: As a user, I want to have paragraphs in the article.

• S1F11: As a user, I want to see image embeddings.

• S1F12: As a user, I want to see breaking news with special styling.

Back-end items

• S1B1: Construct a recommender model and train it on the EBNeRD dataset.

• S1B2: Evaluate the model using AUC and F1 scores.

43

• S1B3: Make an API that returns a list of articles when requested for a

prediction using the model.

• S1B4: Make the number of recommended news to a variable in the API call.

These items align to create a stable and functioning application with the imple-

mentation of the minimum features wanted by Ekstra Bladet, displaying Ekstra

Bladet’s article data recommended by a machine-learning model.

S1F2: As a user, I want to have a personalised news feed. Figure 5.2a

This PBI focuses on creating a component, which will become an essential part

of the landing page of the application - displaying recommended content to the

user. It was designed with the design provided by Ekstra Bladet in mind, which

can be found in the appendix 9. This PBI touched on two files, the news feed

screen, and news card components that populate said screen. The news card

component contains the following:

• Small picture of journalist

• The journalist’s name

• The category of which the article belongs in

• How old the article is

• A thumbnail for the article

• The title of the article

Additional news cards render as the user scrolls, initially using mock data since

the machine-learning model and frontend were developed concurrently. Thumb-

nails require image embeddings from Ekstra Bladet’s image database, managed

by a separate PBI, which poses a challenge as the images are not stored in the

44

development team’s database. While each card is touchable, they do not yet

respond to presses because this feature is part of a separate PBI.

(a) news card component (b) Article screen (c) refresh component

S1F4: As a user, I want to be able to read a news article in the app. Figure 5.2b

This PBI is related to the news card component and addresses the screen dis-

played when a user presses a news card to read the full article. The fonts for this

screen are not included in this PBI and are handled later in the sprint. Addition-

ally, the functionality to navigate from the newsfeed screen to the article screen

upon pressing a news card is also addressed in a later PBI.

S1F7: As a user, I want to see more articles when refreshing the news feed or

reaching the bottom of my news feed. Figure 5.2c

This PBI addresses the functionality of refreshing the news feed, while also dis-

playing more articles when reaching the bottom of the initially rendered articles.

45

This design was not a part of the designs created by Ekstra Bladet and was there-

fore created by the development team and accepted by the product owner in a

following meeting. The backend provides a specified number of recommenda-

tions to the user, and when new ones are needed during refreshing or reaching

the end of the feed by scrolling, the articles shown are from the same pool as

the model is not providing new recommendations. There is a known and doc-

umented issue - the loaded articles are the same as the ones already present on

the feed. This issue stems from the backend always taking the number of recom-

mendations from the top of the ranked predicted articles, rather than providing

different ones. This issue should be addressed as soon as possible.

S1F11: As a user I want to see image embeddings

This PBI enhances the news card component, as well as the articles themselves,

providing correct images corresponding to article IDs. Tackling this PBI, an at-

tempt was made to reverse engineer how image links are constructed by finding

the articles from the dataset on the actual website and inspecting the links. It was

swiftly discovered that the links follow this structure:

https://img-cdn-p.ekstrabladet.dk/image/ekstrabladet/image_id/

relationBig_910/?at=some_hashed_number

To find out what hashing function is used, the development team contacted the

product owner, who assisted the development team by getting in contact with an

internal developer at Ekstra Bladet. It was revealed that the final part of the link

is a hex digest given by MD5-hashing the following hash string:

articleId-publishedTimestamp-modifiedTimestamp

46

This was then swiftly implemented in a backend function that can be run to

append an image_url column to items that are passed to the app with an API call:

Listing 5.1: get article URLs code

1 def generate_image_url(self, image_id, article_id, published_timestamp,

modified_timestamp):

2 hash_string = f"caravaggio-{article_id}-{published_timestamp}-{

modified_timestamp}"

3 md5_hash = hashlib.md5(hash_string.encode()).hexdigest()

4 return f"https://img-cdn-p.ekstrabladet.dk/image/ekstrabladet/{image_id}/

relationBig_910/?at={md5_hash}"

The generate_img_url function takes four parameters: image_id, article_id, pub-

lished_timestamp, and modified_timestamp. It generates a hash string using the

provided parameters, then it calculates the MD5 hash of the hash string. Finally,

it constructs and returns a URL using the image_id and the calculated MD5 hash

as parameters.

Now, when making an API call requesting recommendations, these functions

are run on the recommended items before returning, so that the app can use

these image links to create image embeddings. As a failsafe for any potentially

missing images, if the image ID is not available, then a default placeholder is sent

back with the response.

5.4.2 Sprint Review

In the meeting with the product owner, all frontend PBIs were accepted, with

some minor design tweaks requested for font selection and layout, and the issue

of loading new articles at the bottom of the feed was promptly resolved. Having

already implemented a significant portion of the user interface, breaking it down

into individual components is expected to provide a solid foundation for incor-

porating more advanced features in the app.

47

Regarding the recommender system, numerous attempts were made to imple-

ment promising content-based filtering options (DKN, LSTUR, NRMS), but none

were successful. It was determined that these systems were not suitable for pro-

duction. Diverging from the “intended path” and attempting to transfer any of

these models into practical use for real-time predictions proved too difficult. As

a quick replacement, a simple PyTorch-based collaborative filtering model was

implemented for the EBNeRD data. Code was written to evaluate its perfor-

mance (0.502 AUC, barely better than chance), and it was hosted using FastAPI

to provide a presentable starting point for the product. Although the model was

rudimentary and was merely a temporary solution, it enabled the development

team to set up Axios requests on the frontend, eliminating the need for mock

data.

The product owner and Ekstra Bladets data science team had no strong opinions

on the recommender itself regarding the technology used and implementation

methods. Still, they did request training the model with meaningful features - an

intuitive next step in the process, preferably after pivoting to a better-performing

off-the-shelf option.

5.5 Sprint 2

In the first sprint, the essential parts of the application, and its communication

with an impromptu served model were established. Therefore, in sprint 2, it

is now possible to begin the implementation of user interaction tracking, and

improving the quality of the machine learning model. It is worth noting that the

development team, as well as the product owner, took some days off to celebrate

Easter - thus, communication was not as effective during this sprint, and the

delivered value was reduced too.

48

5.5.1 Sprint Planning

The following is a list of the backlog items which are addressed during this sprint.

The minor frontend fixes and adjustments requested by the product owner are

not documented as PBIs. The items with the most significance, which are the

ones highlighted in the list, are expanded upon in this section. The rest of the

completed PBIs from this sprint can be found in the appendix. 9

Front-end items

• S2F1: Change the font in the article screen to one that looks more readable

(Sans-Serif).

• S2F2: Track clicked articles, corresponding scroll percentages, and read

times in the app.

Back-end items

• S2B1: Include meaningful features in the machine learning model to im-

prove its performance.

S2F2: Track clicked articles, corresponding scroll percentages, and read times

in the app.

User behaviour tracking is the first step in consistently providing new data to the

machine learning model to continuously improve personalised predictions. As a

start, clicked articles, scroll percentages, and read times are tracked because these

properties (other than the ones directly available from article IDs) were initially

recommended by Ekstra Bladets data science team.

In the newsfeed screen, clickedArticleIds and scrollPercentages are state vari-

ables used to store the IDs of articles that the user has clicked on and the scroll

percentages of those articles.

49

setUserHistory function retrieves the user’s history, including clicked article IDs

and scroll percentages, from the device storage asynchronously using getUser-

History, and updates the list of clicked articles and scroll percentages.

handleGoBackFromArticle function updates the clickedArticleIds and scrollPer-

centages states when the user navigates back from an article.

Inside the ScrollView component, for each article in the articles array, a News-

Card component is rendered. The scrollPercentage for each article is obtained

from the scrollPercentages state based on the article’s ID. This will be useful for

a UI enhancement suggested by the product owner, indicating much of an article

the user had previously read.

In the article screen, scrollPercentage, scrollHeight, and readTime are state vari-

ables used to track the scroll percentage, scroll height, and read time of the article,

respectively.

The handleScroll function is triggered whenever the user scrolls within the ar-

ticle. It calculates the current scroll percentage based on the scroll position and

updates the state accordingly.

Listing 5.2: track scroll percentage

1 const handleScroll = (event) => {

2 const { contentOffset, contentSize, layoutMeasurement } = event.nativeEvent;

3 const currentScrollHeight = contentSize.height - layoutMeasurement.height;

4 const currentScrollPercentage = (contentOffset.y / currentScrollHeight) * 100;

5 setScrollHeight(currentScrollHeight);

6 setScrollPercentage(currentScrollPercentage);

7 };

50

Read time is tracked using the useEffect hook. The read time variable is incre-

mented every second.

Listing 5.3: track read time

1 useEffect(() => {

2 const interval = setInterval(() => {

3 setReadTime((prevReadTime) => prevReadTime + 1);

4 }, 1000);

5 return () => clearInterval(interval);

6 }, []);

The handleOnBack function is called when the user navigates back from the ar-

ticle. It saves the article’s ID, timestamp, read time, and scroll percentage using

AddClickedArticle and emits an event using emitGoBackFromArticle to update

the user’s history.

Inside the ScrollView component, the onScroll event is used to call the handle-

Scroll function, updating the scroll percentage as the user scrolls through the

article.

5.5.2 Sprint Review

In this sprint, the development team successfully implemented user behaviour

tracking, an essential system component.

Regarding the machine learning model, although no substantial work was done,

the previously described LightFM model was deemed fit for production. 4 This

was determined by reading its documentation [50] and exploring publicly avail-

able implementations [49] of the model.

Additionally, Ekstra Bladet publicised the leaderboard for the EBNeRD recom-

mender model competition. With several models scoring around 0.65-0.70 AUC,

51

the development team is advised to focus on providing a modular system with

an off-the-shelf recommender that can be easily swapped for a better-performing

model from the competition. This approach offers a more future-proof solution,

as models will likely continue to improve over time, necessitating eventual re-

placement. In the next sprint, the group’s model will need to be replaced while

still fulfilling all previously completed model-related PBIs.

Specifically, this entails training and evaluating an off-the-shelf model on the

EBNeRD dataset using meaningful features, visually representing the results to

observe convergence, exporting the model, and writing API code to communi-

cate with the application and return predictions.

To ensure a realistic solution, model serving is also relevant, and understand-

ing Ekstra Bladet’s current recommender setup (MLOps) is important. During

the sprint, the development team consulted Ekstra Bladet’s data science team to

identify which model aspects (features, architecture, etc.) to focus on, gaining

insight into the most critical properties. They also inquired about Ekstra Bladet’s

tech stack and model serving method (MLOps). However, they did not receive

answers before the sprint ended due to limited availability during the Easter hol-

iday.

With the focus now on providing a robust system, completing the entire pipeline

is vital. So far, the application, model training, API calls using the exported

model, and the fundamentals of behaviour tracking have been implemented.

While the functionality is there, layers of the system must be more clearly sep-

arated, ensuring loose coupling and modularity. After replacing the model and

rewriting the API code, the group must implement a database solution containing

behaviour and article data, serve the model, and incrementally train the model

on new data.

52

5.6 Sprint 3

The primary focus of this sprint is replacing the current model with a well-

established off-the-shelf model, LightFM, while completing every previous model-

related PBI with a complete system in mind, thus enhancing overall modularity

and improving prediction performance. If possible, other minor enhancements

on the frontend sides are also welcome, but all of these should be small items

with quick implementation velocity.

5.6.1 Sprint Planning

The following is a list of the backlog items which are addressed during this sprint.

The minor frontend fixes and adjustments requested by the product owner are

not documented as PBIs. The items with the most significance, which are the

ones highlighted in the list, are expanded upon in this section. The rest of the

completed PBIs from this sprint can be found in the appendix.9

Front-end items

• S3F1: As a user, I want to see how much of an article I have previously

read.

Back-end items

• S3B1: Implement the LightFM recommender model and train it on the

EBNeRD dataset.

• S3B2: Train the model using meaningful features.

• S3B3: Evaluate the model using the AUC score.

• S3B4: Provide a visual representation for the training and validation AUC

scores for each epoch to depict improvements and convergence.

53

• S3B5: Make an API that returns a list of articles when requested for a

prediction using the model. The number of articles returned must be a

variable.

S3B1: Implement the LightFM recommender model and train it on the EBN-

eRD dataset.

In the recommender library example [49], the implementation of LightFM uses

the MovieLens dataset. This is a good starting point for development because the

tabular input data consists of a userID, itemID, rating, and genre. By performing

some data preparation steps, Ekstra Bladet’s user history and behaviour data

can be reformatted to look the same. Properties userID, itemID and genre (topic

labels) are given, rating is switched out for 0 if an article is viewed but not clicked,

and 1 if an article is viewed and clicked. Having properly formatted the data, the

recommender library’s implementation was now also usable with the EBnERD

dataset.

userID itemID rating genre

123456 518008 1 Sport

Note, that every interaction requires its unique row, so quite a bit of work is

necessary to reformat the original EBNeRD data. This process can be found in

the appendix. 9

S3B2: Train the model using meaningful features.

It is accepted for now, that using the article category is a meaningful enough

feature, but it is of course advisable to scale the model to include more features

to improve its performance. Knowing that any decently performing would be

acceptable, potential scaling is kept in mind but is not a high priority.

54

S3B3: Evaluate the model using the AUC score.

It was previously established that AUC is the primary evaluation metric for the

recommender model (also in the RecSys Challenge), therefore, it is a priority to

implement.

The implementation includes the previously included safety check ensuring that

there is no overlap between training and validation data, although it is already

checked during data preparation. Subsequently, the AUC score is calculated us-

ing LightFM’s auc_score module, and the average AUC score is calculated at

last.

Listing 5.4: calculating AUC score

1 # Exclude interactions in the training set from the test set

2 test_interactions_excl_train = test_interactions - train_interactions.multiply(

test_interactions)

3

4 # Calculate AUC score

5 with Timer() as auc_time:

6 auc_scores = auc_score(model, test_interactions=test_interactions_excl_train,

7 num_threads=NO_THREADS)

8

9 # Get the number of AUC scores and calculate the average AUC score

10 num_auc_scores = len(auc_scores)

11 average_auc_score = np.mean(auc_scores)

This implementation was then modified to be incremental, which comes in handy

in finding convergence. This code calculates the average AUC score for each

epoch run and saves these scores so they can be plotted. Using the partial fit

function also means training can continue by simply rerunning this cell multiple

times.

55

Listing 5.5: incremental AUC score check

1 # Store AUC scores for each epoch

2 train_auc_scores_per_epoch = []

3 test_auc_scores_per_epoch = []

4

5 for epoch in range(NO_EPOCHS):

6 # Fit model for current epoch

7 model.fit_partial(interactions=train_interactions, epochs=1)

8

9 # Calculate AUC score for current epoch

10 train_auc_score_epoch = auc_score(model, train_interactions, num_threads=

NO_THREADS)

11

12 test_auc_score_epoch = auc_score(model, test_interactions=

test_interactions_excl_train, num_threads=NO_THREADS)

13

14 # Append AUC score to list

15 train_auc_scores_per_epoch.append(np.mean(train_auc_score_epoch))

16 test_auc_scores_per_epoch.append(np.mean(test_auc_score_epoch))

As for now, the model was only trained for 20 epochs, so no overfitting nor

convergence can be seen on the plots. Still, the model’s performance is already

considerably higher than the temporary model’s 0.502 AUC score. Still, by modi-

fying the parameters, increasing the number of epochs to train on, and potentially

including more relevant features, the AUC score could be much better than it is

at the moment (0.53).

S3B5: Make an API that returns a list of articles when requested for a predic-

tion using the model. The number of articles returned must be a variable.

When creating the API, it was important to keep in mind that if such a system

was put into production, it would most likely be used on both the app and web

interfaces of the news site. This means that any requests and responses should be

independent of the platform. The API for making predictions using an exported

56

Figure 5.3: AUC scores of the LightFM model without any modifications after 20 epochs

machine-learning model is divided into three parts.

Firstly, the API itself contains pedantic models for requests and responses and

endpoints with which an app or web application can make calls. These requests

include getting all news in a non-personalised way, which requires a starting in-

dex and number of news articles to be passed. The starting index is used when

refreshing the feed or loading new articles. When making predictions, a userID is

also passed next with the aforementioned two properties. When starting the API,

news and model data are all loaded, and the recommender system is instantiated

(more on that in the next paragraph), so prediction times can stay fast, normally

a fraction of a second. The API is hosted on a self-defined URL, which can easily

be adapted to a physical or cloud-serving setup such as AWS or Google Cloud

Services, depending on the needs of the owner.

The second component is the LightFM Utilities, where all of the logic for mak-

ing predictions is placed. The class has a function to load a model, right now

simply from an OS path, but this can be changed out to refer to a cloud storage

solution very easily. In preparation for enabling model retrains in the future,

user behaviour data is loaded when initialising the recommender system, and it

is encapsulated in a function to enable data reloads when new data comes in.

When loading the data, LightFM’s internal indexing is also updated. Most im-

57

portantly, the LightFM utility component has a function that makes predictions

for a user. In short, the passed user ID and all articles are internally mapped and

passed to LightFM’s prediction module. It is worth mentioning that in a pro-

duction setting, you would only want to recommend the newest articles - luckily

this parameter could easily be adjusted. The predict function only returns a list

of scores for all articles, so some additional steps must be taken to convert this

into a usable JSON response. In short, actual article IDs are retrieved by trans-

lating the LightFM internal IDs into real article IDs using a mapping function.

Subsequently, the scores are sorted in a descending fashion while keeping their

indices, so that the actual article IDs can also be rearranged the same way. Then,

the requested number of top-scoring articles is extracted and selected from the

article data. Finally, the article data is returned.

The third component is News Utilities. This file encapsulates the formerly de-

scribed logic for generating image embedding URLs and retrieving the requested

number of the latest news.

Throughout each of the components, several failsafes and validation steps are

put in place to ensure that, for example, a given user ID exists, or that a gener-

ated response is correct.

5.6.2 Sprint Review

The main goal of the sprint was successfully fulfilled, with LightFM fully imple-

mented in the system, maintaining or improving the previous implementation

of several PBIs related to model serving. The need for the development team to

switch the model proved to be a valuable test of the product’s modularity. With

the model now in place, the primary focus is to fill in the blanks and deliver a

complete system to the product owner, while experimenting with different model

configurations to increase its performance and provide better recommendations.

58

5.7 Sprint 4

The overarching goal of this sprint is to deliver a complete system. Specifically,

this includes an overhauled app with all key features and behaviour tracking,

data storage in a cloud service, and a model serving setup with an API that

works for both the web and the app. The system should be flexible enough to

retrain and switch models easily. Beyond delivering the system, it is crucial to

support its plug-and-play capability as broadly as possible without imposing too

many requirements.

5.7.1 Sprint Planning

The following is a list of the backlog items which are addressed during this sprint.

The minor frontend fixes and adjustments requested by the product owner are

not documented as PBIs. The items with the most significance, which are the

ones highlighted in the list, are expanded upon in this section. The rest of the

completed PBIs from this sprint can be found in the appendix. 9

Front-end items

• S4F1: As a user, I want to see more recommended articles under a clicked

article to keep me engaged.

• S4F2: Store and continuously update user behaviour tracking data in a

database. Save both as the format provided by Ekstra Bladet, and the

format used in the model.

Back-end items

• S4B1: Implement model serving.

• S4B2: Enable developers to switch between different models without

rewriting the API code.

59

• S4B3: Implement model retrain for a served model.

• S4B4: Implement performance monitoring for a served model.

• S4B5: Improve performance monitoring by using TensorBoard.

• S4B6: Adjust training parameters to improve model performance.

• S4B7: Retrieve behaviour and article data from a database.

• Establish the requirements for switching out to a potentially improved ma-

chine learning model.

S4F1: As a user, I want to see more recommended articles under a clicked

article to keep me engaged.

As mentioned in the initial problem description 1.1, the main issue Ekstra Bladet

is facing is keeping its users engaged, and this is one of the key features to miti-

gate this issue.

The PBI implements a component at the bottom of an article to help users find

new articles. An initial illustration was presented to the product owner, Hartwig,

for feedback.

Figure 5.4: Initial illustration of the feature for this PBI

60

The design was primarily influenced by similar swiping interaction components

on news apps like The Guardian’s [54] and the dating app Tinder [55], given

its iconic and highly influential use of swipe cards. This PBI features a single

element in focus with the next elements placed in the background, accessible by

swiping upwards.

S4F2: Store and continuously update user behaviour tracking data in a database.

Save both as the format provided by Ekstra Bladet, and the format used in the

model.

When working with a collaborative filtering model, the relevance of the dataset is

eminent. The dataset is getting expanded with new articles and user behaviour

entries every minute as users browse, click and constantly create impressions.

This means, that the model must be trained on the new data periodically so it

can rank and predict more precise, up-to-date, and relevant news.

The user data is stored from the application in the local and cloud database every

time a user enters and exits an article. The data must be saved in two different

formats. The original format of what is given by Ekstra Bladet and the format

which LightFM can use for training. Only the LightFM format is actually used

in the training cycle and retraining the model. The Ekstra Bladet format con-

tinues to be saved even when not actively utilised, as it allows for future model

changes without losing the valuable user behaviour data accumulated during the

implementation of LightFM.

S4B1: Implement model serving.

The majority of model serving has already been implemented throughout previ-

ous sprints. This time, everything is checked to adhere to the good practices and

common setup standards described in the technology stack section 4.

61

The missing parts, namely being able to switch models out, retraining models,

and evaluating the model using the API have all received their respective PBIs.

In this PBI, the FastAPI file and its utilities are cleaned up and their purpose

and functionalities are made clear.

Listing 5.6: LightFM API File

1 recommender_system = RecommenderSystem(data_path, models_folder_path)

2 recommender_system.load_data()

3 recommender_system.load_model(model_id);

When starting the LightFM API file, an instance of the recommender model is

made, passing the data path for any locally stored files, and model folders path -

more about that later. After that, the data and model are loaded and the recom-

mender model is ready for use.

S4B2: Enable developers to switch between different models without rewriting

the API code.

During model serving, it is important to streamline the process of switching the

machine learning model out, because that is a common action.

As can be seen before, a recommender instance receives a model folder path

when instantiated.

If the model is to be switched out, a new one just has to be loaded.

62

Listing 5.7: Switching models out

1 def load_model(self, model_id):

2 model_file = os.path.join(self.models_folder_path, f"{model_id}.joblib")

3 if not os.path.exists(model_file):

4 raise FileNotFoundError(f"Model file not found for model ID: {model_id}")

5

6 # Load the model

7 self.model = joblib.load(model_file)

8 print(f"Loaded model {model_id}")

When the load_model function receives the model name, it is joined with the

given model folder path and appended with ".joblib". If the model cannot be

found, an error is thrown before attempting to load.

In the future, for example, if a good interface is created, this load function could

easily be hooked up to an API call just like other functions already are.

S4B3: Implement model retrain for a served model.

Implementing model retraining on new data is also an important functionality

that should be supported in the model serving layer.

The implementation is a complete retrain, because of LightFM’s limitations re-

garding partial fit. When using LightFM’s partial fit function, the users/item-

s/features in the supplied matrices must have been present during the initial

training. This means that if new users/items/features are added to the dataset, a

full retrain is required. Ideally, a partial fit would be the better option, not losing

any previous model training progress.

63

Listing 5.8: Retraining the model on new data

1 def retrain(self, epochs):

2 self.load_data()

3

4 # model learning rate

5 LEARNING_RATE = 0.25

6 # no of latent factors

7 NO_COMPONENTS = 20

8 # seed for pseudonumber generations

9 SEED = 42

10

11 self.model = LightFM(loss=’warp’, no_components=NO_COMPONENTS,

12 learning_rate=LEARNING_RATE, random_state=np.random.RandomState(SEED))

13 self.model.fit(interactions=self.train_interactions, epochs=epochs);

14

15 joblib.dump(self.model, ’Saved_Model/lightfm_model_retrained.joblib’)

In short, new data is fetched, a new model is initiated and trained, and the

retrained model is exported. Currently, the only passed argument is the number

of epochs, but all other configuration figures could easily be included in the

request instead of being hard-coded as it is at the moment.

S4B4: Implement performance monitoring for a served model.

Evaluating the model uses the same AUC score LightFM module that was al-

ready implemented in the model training layer of the system, Just like in the

model training layer, train interactions are excluded from testing to ensure cor-

rectness.

64

Listing 5.9: Evaluating the loaded model

1 def get_validation_AUC_score(self, num_threads=1):

2 test_interactions_excl_train = self.test_interactions - self.train_interactions

.multiply(self.test_interactions)

3

4 auc_scores = auc_score(

5 self.model, test_interactions=test_interactions_excl_train, num_threads=

num_threads,

6)

7

8 average_auc = np.mean(auc_scores)

9 print(f"Average AUC Score: {average_auc}")

10

11 return average_auc

When running the code, the resulting AUC is outputted in the terminal. This is

quite a crude solution, but would be very easy to append the score to a file or

database entry.

S4B6: Adjust training parameters to improve model performance.

It was decided to experiment with adjusting the parameters with the primary

goal of improving the immediate performance of the recommendation system.

Thinking longer-term, one should also take generalisability into account, mean-

ing the model is not overtrained on- and only performs well with the data the

development team currently works with. Also, monitoring long-term perfor-

mance fluctuations would be important considering long-term performance.

This was done by preserving a chosen model which was ensured to run correctly,

and then creating a copy of that model where the chosen parameter changes were

made. The changes in the AUC score were documented and weighed against

65

each other to decide which change should be implemented permanently going

forward.

The default model which was chosen as the standard of these tests had the fol-

lowing values assigned to the parameters.

Listing 5.10: Parameter values assigned in the default model

1 # default number of recommendations

2 K = 10

3 # percentage of data used for testing

4 TEST_PERCENTAGE = 0.25

5 # model learning rate

6 LEARNING_RATE = 0.25

7 # no of latent factors

8 NO_COMPONENTS = 20

9 # no of epochs to fit model

10 NO_EPOCHS = 20

11 # no of threads to fit model

12 NO_THREADS = 32

13 # regularisation for both user and item features

14 ITEM_ALPHA = 1e-6

15 USER_ALPHA = 1e-6

16 # seed for pseudonumber generations

17 SEED = 42

The result of these values was the following AUC scores per epoch.

66

(a) Default Model Training AUC Scores per epoch (b) Default Model Testing AUC Scores per epoch

Figure 5.5: AUC Scores per epoch for Training and Testing

The learning rate determines the step size at which the model parameters are

updated during training. A higher learning rate can lead to faster convergence,

but it may also cause the model to overshoot the optimal solution. [22] This was

investigated by reducing the learning rate from 0.25 to 0.1, which resulted in a

31% increase in the AUC score. This dramatic increase in performance seems

unusual, as changes in hyperparameters should lead to smaller incremental im-

provements first noticeable when nearing conversion rather than such a massive

leap. Therefore, this change would not be considered going forward, and the

default value is kept.

The latent factors represent the underlying features of users and items in the

model. [60] By adjusting this hyperparameter, it could allow the model to cap-

ture more complex patterns in the data. By increasing the number of latent

factors from 20 to 30, an AUC score reduction of 2% was found. This worse per-

formance could be due to overfitting, where the model becomes too complex and

starts capturing noise instead of meaningful patterns. As this change resulted

in the model performing worse, it was decided to experiment with the opposite

change to investigate a potential increase in model performance. By reducing the

number of latent factors from 20 to 10, the following AUC scores were found.

67

(a) Training AUC Scores per epoch with decreased

number of latent factors

(b) Testing AUC Scores per epoch with decreased

number of latent factors

Figure 5.6: Comparison of Training and Testing AUC Scores per epoch with decreased number of

latent factors

This change in performance is not drastic enough to be unusual, as was the case

with the adjustment in learning rate. However, this change is not subtle enough

to the point that it should be ignored. Therefore, a change in this hyperparameter

will be considered as a permanent addition going forward.

To ensure the model is still behaving as intended with the change of this hy-

perparameter, there was a need to find convergence. This is the point where the

model’s predictions stop improving, or the error rate becomes constant. If no

convergence exists, then there is no reachable point of stability for the model.

To reach convergence, the number of times the algorithm would iterate over the

training data to learn the underlying patterns was increased to 1000 epochs. The

result of this showed no convergence, but the point of convergence seemed reach-

able. However, to increase the amount of epochs, an improved structure of train-

ing the model would be optimal. These optimisations will be implemented and

addressed in the upcoming sprint.

68

S4B7: Retrieve behaviour and article data from a database.

Up to now, the model used a locally stored version of the EBNeRD dataset. This

static setup was not fit for continuous retrains. Therefore, the connection to the

database from the model serving instance has been created. It fetches the data in

a certain range from the LightFM database table and replaces the local dataset.

When LightFM outputs the article IDs as predictions, a query to the database is

made to get articles from the articles table, which can be sent to the frontend.

5.7.2 Sprint Review

The system is now complete, featuring a model that performs relatively well

thanks to configuration changes, achieving an average AUC of 0.713 on the vali-

dation dataset. Still, this score can be improved with more training. Additionally,

there have been meaningful enhancements to the model serving layer, including

completing a continuous UX flow on the frontend with additional recommen-

dations under clicked articles, and finalising operations related to the database

layer.

Ensuring the system’s success in this project relies heavily on its modularity,

necessitating thorough documentation of any meaningful constraints. A partic-

ularly important aspect is how simple it is to grab an improved model and put

it in place of another. With the current setup, any joblib formatted model can be

loaded using an argument if they have an auc_score, fit, and predict functions

with correct arguments. The function auc_score should receive the model and

test data, fit should receive the train interactions and the number of epochs, and

predict should receive a user ID and item IDs for those items that should be in-

cluded in the predictions.

Overall, this is not a big ask, as these elements are present in virtually every

69

recommender system. The joblib file format requirement does not seem to pro-

pose any issues either, other than having to write some additional code so one’s

model is not only exported as a TensorFlow or PyTorch model but also as a joblib

file. Although it is already common practice, so the technology should not be

completely foreign to developers.

Shortly before the end of the sprint, Ekstra Bladet’s data science team lead, Jesper

Rix assisted the development team by describing Ekstra Bladet’s MLOps setup in

an email 9. The following sections are a summary of the contents of the message.

Currently, Ekstra Bladet is using a FastAPI/Flask model serving setup largely

identical to this project’s. It is worth noting that Ekstra Bladet is planning a transi-

tion to a Kubernetes/Argo Workflow setup using PyTorch Serve or Nvidia Triton

Inference Server. Kubernetes was also previously researched and described as a

fancier model serving framework for larger organisations. CI/CD-related model

operations, Docker container hosting, and cloud services are all done using AWS

solutions. Otherwise, tests and deployment are automated using GitHub actions

run upon merging.

Ekstra Bladet’s collaborative filtering models are trained every 2 hours as they

otherwise have “cold start” problems as the extra magazine publishes many ar-

ticles in 2 hours. The content-based models are trained once a day and are more

robust and can handle cold starts. Tests have been run where the models were

only trained once a week vs. every day, and there was only slightly better per-

formance by training every day. The data science team has not looked at metric-

based retraining of the models (for example retraining after X number of new

articles published).

The only metrics used for production-level model performance evaluation are

70

sales and click-through rate. Nevertheless, Ekstra Bladet collects a lot of data

about the models’ performance and their derived effects in the news feed, but

it’s not something they currently use for monitoring, only plan to.

With only a single sprint left, the development team will not attempt to recre-

ate the MLOps setup Ekstra Bladet wishes to transition towards. Still, the pro-

vided information is highly valuable in confirming that the development team’s

solution is, arguably in many aspects, on par with the currently deployed system.

Having delivered a complete system, it will now be important to clean up the sys-

tem in terms of code quality and modularity. If needed, additional tests should

be written. Furthermore, the main takeaways regarding the model training layer

should be streamlined and presented more systematically.

5.8 Sprint 5

The main focus of this sprint is to finalise the product. This means that no major

additions to the product are planned, only cleanup work and solidifying the

stability and code quality of the product.

5.8.1 Sprint Planning

The following is a list of the backlog items which are addressed during this

sprint.

Front-end items

• S5F1: As a user, I want to see more recommended articles under a clicked

article to keep me engaged. (Improving Stability)

• S5F2: Write any missing unit tests to cover more complex components.

71

• S5F3: Perform a general code cleanup.

• S5F4: Clean up the folder structure and file names.

• S5F5 Perform static code analysis using CodeScene and fix any potential

issues.

Back-end items

• Identical to frontend items F2-F5

S5F1: As a user, I want to see more recommended articles under a clicked

article to keep me engaged. (Improving Stability)

After gathering additional feedback from the meeting with the product owner

5.7.1, the development of the PBI started in sprint 4 and concluded in sprint 5.

(a) The carouselCards component at the bottom of

an article

(b) The tutorial overlay displayed on top of the

first card in the stack

72

The user is presented with articles represented in a stack of cards, which can be

navigated through by swiping upwards or downwards. When a card is tapped,

the user is navigated to the selected article. Additionally, an assistive overlay

was also created as the result of a short test with a supervisor. The overlay is

placed on the first card and instructs the user to swipe up then fades out when a

swipe-up gesture is detected.

In terms of optimisation and improvement regarding this backlog item, some

future work could be considered. The articles displayed in the wheel are, as of

this sprint, passed on from the home page and display the same articles. How-

ever, the component was designed to be modular, making it easy to change the

data which is being displayed in the stack of cards. In the future, when a function

is created to gather recommended articles based on the currently viewed article,

the articles can simply be passed onto the component by using the data input

parameter.

5.8.2 Sprint Review

The primary objectives of this sprint were successfully achieved, focusing on

enhancing stability and code quality. Through thorough clean-up efforts and im-

provements in modularity and maintainability, the codebase underwent signifi-

cant refinement. Additionally, minor adjustments to other tasks were finalised,

contributing to a solid foundation for future enhancements.

73

Chapter 6

Quality Assurance

To ensure and evaluate the quality end product, the development team reflects on

the system setup in light of theoretical correctness, performs static code analysis

of the codebase using CodeScene, and uses the AUC score to provide a conclusive

evaluation of model performance. Furthermore, other quality-assurance-related

aspects of workflow are discussed and how they could be extended to ensure

higher product quality.

Quality Assurance, QA, is the event of ensuring various processes, procedures,

and standards are correct and suitable for a given project. [18] The implemen-

tation of QA-related processes is parallel to the development of the project, thus

resulting in faster development time with fewer recurring bugs. Known bugs are

documented as GitHub issues, and are most commonly addressed with hotfixes.

Throughout the project, sprint reviews served as a quick quality check on the

completed product backlog items and delivered increments, with the product

owner having the last say in accepting items to be considered done or not. Their

input was imperative in producing meaningful increments with acceptable qual-

ity. No user tests were conducted due to the massive effort it would take to pro-

74

duce representative data from the user feedback. Instead, knowing the product

owner’s professional experience in their field, they were responsible for repre-

senting their users’ interests.

6.1 Evaluation of the system

The product, as stated in the problem statement 3.4, is a modular system with a

mobile frontend which supports a machine-learning-based recommender model

and database communication. Software modularity is a concept, which uses sets

and elements to explain the different modules of a software architecture. [25] The

way to measure the degree of modularity is by reviewing the internal module

cohesion and the degree of interdependence between modules. For simplicity,

the layers from the system architecture, 4.6, are treated as the modules.

(a) Cohesion (b) Coupling

Figure 6.1: The different levels and types of cohesion and coupling

6.1.1 Module cohesion

Module cohesion can be defined as the following: "In computer programming, co-

hesion refers to the degree to which the elements inside a module belong together" [25],

and there are different levels and types of cohesion, which can be seen in figure

75

6.1a. When measuring cohesion, it is vital to determine how the elements inside

of the module are grouped and what their relationships are to each other.

This project’s implementation of high cohesion is achieved by separating the code

into layers from the system architecture. Inside the application layer, the func-

tionality is divided into sub-modules, which handle local storage, database, API

and user interface-related components. The data layer has only database-related

components, whereas the model serving only contains model-related functional

components. The modules have functional cohesion since all the layers in the sys-

tem are designed to handle their domain of tasks. Thus, it is easier to maintain

their interchangeability in the future.

6.1.2 Module coupling

Coupling can be defined as the following: "In software engineering, coupling is the

degree of interdependence between software modules; a measure of how closely connected

two routines or modules are" [25], and as cohesion, there are multiple types of cou-

pling as seen in figure 6.1b. Low coupling is an indicator of a well-structured

system, and it is the goal when designing a modular system.

In this project, there is data coupling which is the next highest type of cou-

pling. The modules share data through parameters or API calls, where only the

necessary data is passed through. This means only when there is a complete re-

structuring of the data, there is needed to alter the function to handle the change.

In that case, it would be good practice to add a data model layer. This ensures

that the data always has the same format when being sent to/from the appli-

cation layer. An example of not having a data model layer is several functions

in the database sub-module in the application layer that require the data created

from the local storage sub-module as input to send to the database. Ideally, all in-

teractions between sub-modules would go through one channel to minimise the

76

changes in the modules if necessary. This would result in less interdependence

between the modules and then a lower coupling.

6.2 Code quality

The communication between the different components in the system is done by

using an application programming interface, API. Thus, the API and the compo-

nents must be tested separately and together to evaluate and ensure the reliability

of the system. The system has so far been separated by both frontend and back-

end and system sub-layers. When focusing on the code quality and testing, the

system is therefore separated into frontend and backend.

In the frontend, the following components are tested; Axios requests, asyn-

chronous storage (React Native local storage), and database operations. These

components were prioritised for testing because they are responsible for the most

meaningful communication and storage functionalities. Axios requests are tested

since it handles sending and requesting articles from the model. If this compo-

nent is failing for some reason, the whole app is useless since there are no articles

to read. The asynchronous storage and database components are closely inter-

twined because all database functions are called from async storage functions.

Async storage is tested to ensure that all the user data is correctly saved locally,

whereas database functions test that sending the user data to the cloud database

is successful. Considering that the model object in the backend fetches the newest

user data from the database, the database functions must be guaranteed to work

as expected.

Considering the backend, the most important components to test were the API

endpoints and model-related utilities.

77

To test the endpoints, mock payloads are sent to the API, and assertions are

made for the format of the returned data and status code.

To test the model-related utilities, a fixture is initiated, creating an instance of the

model. Thereafter, the functions responsible for loading data, loading a model,

evaluating a model (AUC), retaining the model, and making predictions using

a loaded model are independently tested with mock data and individual unit

tests. Furthermore, to ensure correctness in real-life scenarios, a series of these

core functionalities are tested for example containing a sequence of the same op-

erations that would be run when switching a model out and making predictions,

or when performing a retrain call. With these more complex tests, the correctness

of multiple functions working together is also checked.

The data preparation file, which converts Extra Bladet’s raw behaviour and his-

tory into usable data for the LightFM model, is tested with numerous sanity

checks throughout the process. Despite this file only having to be run once, the

generated data must be correct and usable for proper model training. Learn-

ing from Ekstra Bladet’s issue of having overlapping items present in both the

training and validation datasets, the development team took a lot of precautions

when preparing the data.

If the testing of data preparation received more attention, it would have probably

received a package of tests that could be run on the exported data. Knowing that

LightFM is strict about its data, for example evaluating with overlapping data is

not allowed and the internal mapping mechanism throws a warning when con-

flicting click/no-click entries are received, it can be assumed that several checks

are also run on the data before model training begins.

A CodeScene static code analysis was run on both front and backend reposi-

78

tories to establish general code quality. This analysis should highlight issues

related to code complexity, tight coupling, dead code, and other more intricate

things contributing to technical debt. [44] The results strongly suggest that the

code is readable and high-complexity problems are successfully broken down

into more manageable sub-parts. The frontend repository has scored an average

of 9.84, and the backend repository has an average of 9.78 out of 10. No changes

are explicitly suggested by the static code analysis tool, the most "problematic"

file being a file for testing endpoints in the backend, where the tool indicates that

there may be a few too many functions in a single file. This is looked at by the

developers, but no changes are made because keeping all of these tests in one

place seems like a more solid option than spreading them out into different files.

Figure 6.2: Summarised results of the CodeScene static code analysis

6.3 Model Quality

Both in the model training and model serving layers, the AUC score was used

as the primary metric for model evaluation, as it is the industry standard for

machine-learning-powered binary classification recommender systems. 2 For

calculating this score, LightFM’s own ROC AUC score module was used. As

previously described 2, LightFM has numerous automatic checks for potential

data leaks, and the development team has done numerous sanity checks to en-

sure that the EBNeRD dataset converted to a LightFM-compatible format has no

issues.

79

The most optimal LightFM configuration found by the development team uses a

75-25% test split with a learning rate of 0.25 and 5 latent factors. Training with

this setup for 4000 epochs yielded a training AUC score of 0.9082, and a testing

AUC score of 0.9001. This means that 90% of the predictions made by the model

should be relevant to a given user. By observing the plot, it can be seen that the

model reaches convergence, although does not overfit yet. Given that every 100

epochs only yielded a constantly falling increase of 0.0001 in testing AUC score,

so the development team did not spend more time on the model, but instead

explored more configuration options. After running an identical configuration

with 10 14 and 20 15 latent factors for 4000 epochs each, it was also determined

that given enough time, these configurations would also top out at around the

same AUC scores as the one with 5 latent factors.

Figure 6.3: Results from the most optimal LightFM model configuration

LightFM provides a module for cross-validation when generating training and

test splits, and the development team ensured that different random seeds do

not have any meaningful effect on evaluation results (+-1%).

Initially, the F1 score was also used as an evaluation metric, but it was not im-

80

plemented when switching to LightFM, because it was not considered a high

priority. If the development team had a bit more time, LightFM’s "Precision/Re-

call at K" evaluation modules could have also been implemented fairly easily.

By looking at the documentation[50], these two modules look like utilities for a

model-specific implementation of NDCG. 2

Lastly, another intuitive way to determine the model quality is to compare this

project’s model to other models on the same dataset. The EBNeRD dataset is

obtained from a machine-learning challenge held by Ekstra Bladet called Rec-

Sys Challenge 2024 [12]. Both this project and the RecSys challenge primarily

measure a model’s performance by AUC - NDCG could have been used as a

secondary metric, as it is also used in the challenge. As previously described,

implementing NDGC should be possible with LightFM utility modules.

Figure 6.4: RecSys Challenge 2024 Leaderbroad [28]

As seen in figure 6.4, the highest model submission has an approximate testing

AUC score of 0.83. The challenge most likely uses a different validation dataset

81

(to ensure that a participant’s model is not trained on it), so when comparing the

leaderboard results to this project’s model, it can be assumed that the LightFM

configuration would produce similar results.

6.4 User validation

Performing user testing could have arguably proposed numerous potential im-

provements on the frontend side of the application, or have given more ideas for

different ways of implementing a personalised feed. After all, user satisfaction

and engagement are core qualities which should be taken into account when de-

ploying such a massive overhaul of a mobile application.

Given that the development team was given an exact design from the start, the

product owner already had a clear vision in mind, which seemed more than rea-

sonable for the developers.

Although evaluating whether a personalised news feed results in increased en-

gagement compared to a general news feed would mean a lot considering the

success of the project, doing so would require a massive number of test partici-

pants to produce representative results. Most realistically, it would be tested in

production.

Certainly, Ekstra Bladet has the resources to conduct enough testing to be able

to produce representative data, but due to the lack of time or meaningful/repre-

sentative/quantifiable results, the development team chose to not put resources

into a small-scale user validation session.

82

Chapter 7

End product

This chapter presents the final product, showcasing the culmination of our project’s

development. Key features are highlighted, and a high-level technical overview

is provided.

The end product is a system consisting of an overhauled mobile application (Re-

act Native with Expo), where Ekstra Bladet’s articles are presented to users in a

personalised news feed. These articles are recommended by a well-performing

collaborative filtering model (LightFM model with 0.9 AUC score) trained on Ek-

stra Bladet’s interaction data. While using the app, user interactions are stored

in- and article information is retrieved from a cloud database (Supabase).

7.1 Mobile Application

7.1.1 Personalised News Feed

When the application is opened, the users are presented with a personalised news

feed. The contents of this feed are generated by sending a request to an API that

serves a machine-learning model to make recommendations and fetching the

recommended article data from a Supabase database. The current model is an

83

implementation of LightFM trained on interaction data from the EBNeRD dataset

provided by Ekstra Bladet.

7.1.2 Article Interaction

When the user has found an interesting article, they can tap on it to read it.

The application navigates to a separate screen which displays the contents of the

article in a readable format. Additionally, a progress bar indicates how far the

user has read in an article and, when on the feed, displays the reading progress

for previously read articles.

7.1.3 Swipe-able Article Cards

When a reader reaches the bottom of an article, they are presented with a stack

of cards, where each card displays a preview of another article, including the title

and thumbnail image. Each card displays an article recommended to the user,

and if the currently displayed card is not found interesting by the user, they can

discard it by swiping up, revealing the next card underneath.

84

(a) The personalised news feed (b) The article interaction (c) The swipe-able article cards

Figure 7.1: Key features of the mobile application

7.1.4 User Behaviour Tracking

The application continuously tracks article clicks (or no-clicks), read times, and

reading percentages. The tracked interactions are stored both locally and in a

cloud database corresponding to an automatically generated userID. This is im-

portant, because to continuously recommend relevant articles, user behaviour

must be tracked and the model must be retrained on the new data. To align with

Ekstra Bladet’s standards, and also to skip a computationally intensive data-

preparation step for the currently implemented LightFM model, interaction data

is both saved in Ekstra Bladet’s format and a format compatible with the LightFM

model.

85

7.2 Model Serving

As mentioned before, recommendations are requested by the application through

an API call to the model-serving API. Model serving is done using the FastAPI

RESTful API framework. By making requests to the specified API endpoints, the

application can retrieve a list of the latest news or a specific number of recom-

mended articles, and developers can easily switch models out as long as they are

serialised as joblib files, and have an auc_score, fit, and predict functions with

correct arguments. Developers can also evaluate (get AUC) and retrain models

for a requested amount of epochs by reaching the correct endpoints.

7.3 Model Training

Before a model is served (used in the application), it must first be trained and

evaluated. The training process for the LightFM model is handled in three major

events. First, the data is preprocessed, meaning the user behaviour and article

data are formatted to be compatible with the model. Second, the model is trained

by running a specified number of training epochs and evaluating the model per-

formance using AUC scores for training and testing (these scores are also plotted

to give a better overview). Lastly, the model is exported as a package includ-

ing the model, a configuration file containing all of its training variables (e.g.

learning rate, number of epochs, latent factors, etc.), and a CSV file containing

evaluation data (training and evaluation AUC scores and corresponding epoch

number).

7.4 Cloud Database

When the application requests recommended articles, the model serving API re-

turns a list of article IDs, and the article data is fetched from a Supabase database.

86

When initiating a model retrain using the model serving API, new user interac-

tions are fetched from the Supabase database. As previously mentioned, user

interaction data is also stored in two formats. The first format is the EB format

and the other one is the format of what the current model accepts. Both are

continuously updated using API calls.

87

Chapter 8

Discussion

After finishing up product development, there is naturally always room for im-

provement and countless ideas for how the product could be scaled and its qual-

ity refined. Other than exploring possibilities for future enhancements, the suc-

cess of the project and overall workflow are discussed, and bigger-picture ethical

concerns and potential risks of the product are explored.

8.1 Reflections on the development process

This section encapsulates a critical analysis of the development team’s Agile

workflow, events, cooperation between roles, and pipeline.

Overall, the use of 2-week sprints consisting of sprint planning, semi-daily in-

ternal stand-up meetings, and sprint review was very helpful in encouraging

the development to continuously deliver valuable increments and to keep the

development on track whenever the focus shifted from the main objectives of

the project. The lack of formal sprint retrospectives did not give the impression

of insufficient continuous improvement considering the process itself, given that

the development’s workflow and morale were largely unchanged, and never re-

sulted in a failed sprint. Arguing from a theoretical perspective, formal sprint

88

retrospectives may have resulted in increased value delivery, but at no point felt

like a necessity.

Sprint planning aided a lot in getting an overview of the coherence between

the main goal of a sprint and how its smaller parts (PBIs). Based on experience,

the development tackled documented dependencies during parallel development

by using mock data, bypassing unnecessary navigation in the app, and working

with older machine-learning models. The solution’s degree of modularity also

enabled the development to switch components out with relative ease.

Daily stand-up meetings helped keep every developer in the loop with others’

progress, and at times resulted in useful updates and questions for both super-

visor and product owner. During sprints, updates were frequently sent out to

ensure transparency between parties.

Physical sprint review meetings were held separately for the product owner and

project supervisor. Each event entailed a presentation of the sprint’s PBIs, any rel-

evant new findings, gathering feedback, and asking/answering questions from

both sides. After each sprint review, the development left with a clear goal in

mind for the next sprint, and all notes taken throughout the event were imme-

diately formalised in a to-do list. It is worth mentioning that the product owner

was more invested in the application and overall system than specific model de-

velopments, so these aspects received more attention in presentations tailored for

them.

Since the development team is writing this report, it is difficult to give an unbi-

ased evaluation of how well the development fulfilled their role. Considering the

most important aspect of Agile - delivering value with an acceptable velocity, the

development did succeed in fulfilling their role, while ensuring good communi-

89

cation with other actors and continuous integration of the stakeholders’ feedback.

The supervisor of this project did an outstanding job at mentoring a develop-

ment relatively new to machine learning, and initially entirely clueless about

recommender systems. Other than consistently providing helpful guidance and

clear feedback throughout the entire project period, they ensured that the devel-

opment was always working towards answering the central problem statement

of the project. Communication was never an issue, and the supervisor willingly

took extra time to answer questions outside of meetings, further highlighting

their unwavering support.

The product owner of this project provided the group with a clear product vi-

sion from the start. Given this, the majority of the application itself was already

finished in approximately 2 sprints, and they were more than open to discussing

new ideas. During meetings and discussions about the product, their feedback

was concise and user-centric, providing a very useful perspective for the devel-

opers. The product owner being more invested in the application and seeing the

overall system in action would at times mean that the acceptance of some model-

related developments partially relied on the supervisor’s feedback. This should

not be interpreted as a shortcoming on the product owner’s side, because the

product owner should be a functional expert, not a technical expert. Communi-

cation was never an issue, and the product owner was always actively involved in

the process, often contacting technical experts from Ekstra Bladet’s data science

team to provide even more support for the development team.

The workflow aspect that should have received more attention was the contin-

uous integration through GitHub actions. The only automated check is linting,

and not using GitHub actions for running all unit tests, building the app, and for

example, performing static code analysis on a push, are all missed opportunities

90

that could ensure better code quality and not having to spend time on minor hot-

fixes later. Still, there were only very few instances where bugs slipped through

the code review process.

8.1.1 The product owner’s reflections on the development process

As mentioned in the previous section, there could be a risk of a biased evaluation

if only the development team’s perspective was documented. To alleviate this,

the product owner was contacted with questions regarding their thoughts on the

cooperation throughout the project, and their sense of fulfilment of fulfilment as

a central actor. 9 Regarding communication, they stated that they felt there was a

level of transparency which exceeded their expectations based on their experience

with previous projects within the same problem domain. Regarding their sense

of fulfilment as a product owner, Hartwig stated that they felt a clear response

to their feedback at all times and were satisfied with their influence over the end

product. When reflecting upon the current product management methodology

used at Ekstra Bladet, which focuses on leniency in managerial oversight, [41] the

product owner felt they might have had too much of an impact on the product.

8.2 Technical difficulties

This section encompasses a discussion of issues strictly relating to the technical

side of the project, mainly focusing on how the coding process was affected.

LightFM, being a best-effort service, has some limitations and issues not explic-

itly stated in its documentation. The fact that partial fit (used for incremental

retraining) does not allow any new items or users to be introduced compared

to the original training dataset renders it pretty much useless in production -

although still very useful in the model training layer. Finding out about this

other similar limitation through GitHub issues and not the official documentation

91

was at times frustrating. Furthermore, as formerly described, the recommenders

package uses some tools readily available on Linux, but not on Windows or IOS

systems, which forced the development to run the model training on Google Co-

lab instead of doing it locally. LightFM does not have a GPU implementation,

and disconnects were generally not an issue, so this did not have a major effect

on productivity.

Other than LightFM, no major package-related issues were discovered, and Expo

was a helpful tool for keeping all dependencies up-to-date. The only minor

issue requiring a hotfix was when updating Expo SDK from 50 to 51, the react-

navigation package required an additional import in the app.js file to work prop-

erly. Luckily, this was a documented issue, so the solution was straightforward

to implement.

8.3 Future work and scaling

While the end product arguably provides an adequate solution to the proposed

problem, both the development team and product owner had numerous ideas

about how the system could be scaled with additional features and enhance-

ments to existing ones. Other than theory-crafting new ideas, there are also some

leftover product backlog items which have not been addressed due to receiv-

ing lower priority or requiring too much time to complete. In this section, the

possible future work on the product is detailed.

8.3.1 The product owner’s thoughts on future work

The product owner was contacted to gather their thoughts regarding future work,

which is crucial, as it assists in aligning business goals, prioritising the tasks and

setting clear expectations for all parties. When asked about what aspects of the

product should receive the most focus if the development team was given more

92

time, the product owner responded "The news experience". 9

Hartwig describes the potential of implementing machine learning as something

which can curate an interesting news feed, instead of relying on a "news reac-

tion", which is gathered by "clickbait, sensations and doom-scrolling". The prod-

uct owner thinks it is a shame that their current focus is on creating clicks, rather

than having the user provide them naturally through curated content. However,

they are unsure if the source of this issue stems from the news feed, or the articles

themselves.

The product owner has a clear vision for the issue which needs to be tackled,

and they also describe candidates for the root of these issues. Regarding which

should be handled first could become clearer by discussing resource manage-

ment in the next iteration, while also discussing possible solutions to these issues

as they require different tools to solve.

8.3.2 Leftover PBIs

As described above, some PBIs were planned, drafted and loosely defined but

did not get implemented due to time constraints or a shift in priorities. PBIs

with significance will be expanded upon beyond the listing.

• Update the carousel cards component to use content-based filtering when

fetching data

• Once a model is Content-Based Filtering hybrid is implemented: Make

frontend for onboarding (cold start solution)

• As a user, I want to see different types of articles (live, breaking, gallery,

etc.) with unique styling

• As a user, I want to be able to bookmark news

93

• As a user, I want to have a history of my viewed articles and how much of

them I have read

• Make an example of an ad in the news feed

• As a user, if there is no image provided for an article, I want to see a large

text thumbnail

• As a user, I want to be able to follow events (use named entity recognition

data)

• As a user, I want to be able to switch between light and dark display options

Once a model is Content-Based Filtering hybrid is implemented: Make fron-

tend for onboarding (cold start solution)

This PBI would be picked up once a Content-Based Filtering model has been

implemented. The purpose of this PBI is to solve the aforementioned cold start

problem, which involves a new user whose initial preferences are not specified

and is therefore difficult for them to receive recommendations. 2.3.1

As for the design of the onboarding solution, other news outlets use similar

designs, with various topics displayed to the user to which they respond by

pressing the ones they want to see more often.

94

(a) The New York Times app (b) The Guardian app

Figure 8.1: Onboarding on two different news apps

In the case of Ekstra Bladet, their article data contains a property which specifies

the article’s topic. This same property could be used to display all possible topics

to the user, which they can then pick the ones they want to follow.

Update the carousel cards component to use content-based filtering when fetch-

ing data

As mentioned in the section regarding the component, the carousel cards com-

ponent, which is supposed to recommend articles based on the currently viewed

article, currently uses the same collaborative filtering model as the personalised

feed. In this context, a content-based filtering model would make a lot more

sense to implement.

95

8.4 Ethical concerns

The success of Twitter (X), Instagram, and most recently TikTok has proven that a

"for-you" page providing relevant data for users can result in a massive boost in

engagement longevity and retention. 1 While this unarguably has a good effect

on business value, it can have dangerous side effects.

When browsing non-personalised content, the user is met with content that does

not necessarily align with their personal beliefs, political agenda, or religion.

Users are involuntarily confronted with other perspectives, which may at times

mean that a user has the opportunity to form a more well-rounded opinion on

any given subject. On the contrary, when browsing content on a "for-you"-page,

if an algorithm has gathered enough data to accurately map a user’s personal

preferences, (which are likely labelled by, for instance, political leaning and sim-

ilar properties), they enter a so-called filter bubble.

A user being in a filter bubble implies that algorithms have segregated the user

from information and viewpoints that diverge from their expressed interests, po-

tentially causing them to overlook crucial information. This phenomenon can

narrow the user’s worldview and impede exposure to diverse perspectives, hin-

dering their ability to make well-informed decisions and engage in meaningful

discourse. [20]

This phenomenon is empirically documented in Leysen et al.’s research paper

[5], concluding that "(...) filter bubble-existed recommendation systems often decrease

the diversity of users’ beliefs, leading to bias and ideological segregation, reinforcing

users’ existing beliefs and limiting their exposure to alternative viewpoints (...)".

As documented in Vozab’s research paper [59], average media literacy is con-

96

tinually improving with younger generations, meaning that the older a user is,

the more likely they are to be oblivious as to how filter bubbles affect their daily

content consumption. Although this is a promising trend, media literacy in all

generations is crucial for productive discourse.

The controversial use of personal data in politics is not unprecedented. Shortly

after the 2016 United States presidential election concluded, both the Liberal and

Republican parties were scrutinised for their extensive use of personal data to

sway voters. The two parties spent a total of 72 million dollars on targeted Face-

book advertisements, with Donald Trump succeeding most in increasing support

among their potential voters, according to Ángel and Rubén Cuevas, researchers

from the UC3M Telematics Engineering department. [29]

It must be stated, that the root of the controversy was how the data was col-

lected - concerns regarding how data was used were the aftermath of the scan-

dal. Namely, the root of the controversy is the Facebook–Cambridge Analytica

data scandal, revealing that the personal data of millions of potential voters was

collected and sold without their consent, and predominantly used for political

advertising. [39]

Even if data is collected with the users’ consent, who are very likely just clicking

on mandatory GDPR consent-related popups without reading them, there are

countless issues with targeted advertisements - or curated content - with effects

on socio-critical events.

The closest any major platform has come to ensuring the factual correctness of

advertisements is Twitter’s community notes, where human moderators can take

it upon themselves to reveal inaccurate information and missing context in any

post including advertisements. These notes are displayed under posts, and those

97

who had previously interacted with posts that got a community note later on

receive a notification too. [42] More recently, TikTok has also begun putting

explicit labels on AI-generating content, as generative AI in combination with

personalised feed introduces new complexities.

98

Chapter 9

Conclusion

The goal of this project was to provide a solution to the following problem state-

ment:

Enhance the user experience and improve user engagement on Ekstra Bladet’s

mobile application by developing a highly modular software system that sup-

ports a machine-learning-based recommender model. Provide a complete system

and display a personalised news feed to users on an overhauled mobile applica-

tion. Prove the success of the machine learning with an adequate performance

evaluation process using relevant metrics.

The end product of the project system encapsulates the core objectives outlined in

the problem statement. The system leverages a personalised news feed for users

as a result of the successful integration of a system that supports a machine-

learning-powered recommender model. This is made possible by tracking user

interactions in the application, storing them in a database, using this data to train

a machine learning model, and deploying a model.

The recommender system, built using the LightFM model, has demonstrated

99

robust performance with a testing AUC score of 0.9, indicating its effectiveness

in predicting user preferences accurately. Thus, although not supported by quan-

titative research due to time constraints, based on third-party research it is safe

to assume that such a well-performing recommender greatly aids in enhancing

user engagement.

The modularity of the system ensures scalability and future-proofing, allowing

for easy updates and integration of new features or models. The overhauled mo-

bile application provides an intuitive user interface and features like a virtually

endlessly scroll-able feed and the swipe-able article cards further contribute to a

continuous content flow.

The effectiveness of the machine learning component is validated through a com-

prehensive performance evaluation process. The model training and evaluation

steps, including preprocessing, training epochs, and AUC score analysis, confirm

that the recommender system meets the desired performance criteria. Addition-

ally, the flexibility of the model-serving API, built with FastAPI, allows for easy

deployment and management of the machine learning models.

While the project has met its initial objectives, there are several avenues for

future enhancements. Potential improvements include refining the recommen-

dation algorithms, enhancing the user interface, and integrating more sophisti-

cated machine-learning models. Additionally, addressing leftover product back-

log items will further enhance the system’s functionality and user experience.

The ethical implications of personalised content and filter bubbles were consid-

ered. Ensuring that users are exposed to diverse viewpoints and preventing

ideological segregation is crucial. Future iterations should focus on incorporat-

ing mechanisms to balance personalised recommendations with diverse content

100

exposure.

In conclusion, the project has effectively addressed the problem statement by

delivering a complete and modular software system that enhances user engage-

ment through personalised news recommendations. The combination of a high-

performing recommender model, an intuitive mobile application, and a scalable

architecture confirms the project’s effort to meet its objectives. Moving forward,

continued development and ethical considerations will ensure the system re-

mains effective and responsible in its user engagement strategies.

101

Bibliography

[1] Adressa Dataset | Papers With Code. url: https://paperswithcode.com/

dataset/adressa. (accessed: 22.05.2024).

[2] Anjali et al. Layered Architecture. 2024. url: https://www.geeksforgeeks.

org/layered-architecture-in-computer-networks/. (accessed: 28.05.2024).

[3] Chuchan et al. Neural News Recommendation with Attentive Multi-View Learn-

ing. 2020. url: https://www.researchgate.net/publication/334457560_

Neural_News_Recommendation_with_Attentive_Multi-View_Learning.

(accessed: 02.05.2024).

[4] Gohlamy et al. Why 70/30 or 80/20 Relation Between Training and Testing Sets:

A Pedagogical Explanation. 2024. url: https://scholarworks.utep.edu/cs_

techrep/1209/. (accessed: 28.05.2024).

[5] Leysen et al. What Are Filter Bubbles Really? A Review of the Conceptual and

Empirical Work. 2022. url: https://www.researchgate.net/publication/

362968157 _ What _ Are _ Filter _ Bubbles _ Really _ A _ Review _ of _ the _

Conceptual_and_Empirical_Work. (accessed: 16.05.2024).

[6] Mingxiao et al. Neural News Recommendation with Long- and Short-term User

Representations. 2020. url: https://paperswithcode.com/paper/neural-

news-recommendation-with-long-and. (accessed: 02.05.2024).

[7] Wu et al. MIND: Microsoft News Dataset. 2020. url: https : / / msnews .

github.io/. (accessed: 02.05.2024).

102

https://paperswithcode.com/dataset/adressa
https://paperswithcode.com/dataset/adressa
https://www.geeksforgeeks.org/layered-architecture-in-computer-networks/
https://www.geeksforgeeks.org/layered-architecture-in-computer-networks/
https://www.researchgate.net/publication/334457560_Neural_News_Recommendation_with_Attentive_Multi-View_Learning
https://www.researchgate.net/publication/334457560_Neural_News_Recommendation_with_Attentive_Multi-View_Learning
https://scholarworks.utep.edu/cs_techrep/1209/
https://scholarworks.utep.edu/cs_techrep/1209/
https://www.researchgate.net/publication/362968157_What_Are_Filter_Bubbles_Really_A_Review_of_the_Conceptual_and_Empirical_Work
https://www.researchgate.net/publication/362968157_What_Are_Filter_Bubbles_Really_A_Review_of_the_Conceptual_and_Empirical_Work
https://www.researchgate.net/publication/362968157_What_Are_Filter_Bubbles_Really_A_Review_of_the_Conceptual_and_Empirical_Work
https://paperswithcode.com/paper/neural-news-recommendation-with-long-and
https://paperswithcode.com/paper/neural-news-recommendation-with-long-and
https://msnews.github.io/
https://msnews.github.io/

[8] Are younger generations moving away from traditional news sources? | Deloitte.

url: https://www2.deloitte.com/dk/da/pages/technology-media-and-

telecommunications/topics/digital-consumer-trends/are-younger-

generations-moving-away-from-traditional-news-sources.html. (ac-

cessed: 14.05.2024).

[9] Axios. url: https://axios-http.com/. (accessed: 15.04.2024).

[10] Mayur Badole. A Comprehensive Guide on Recommendation Engines and Imple-

mentation. 2024. url: https://www.analyticsvidhya.com/blog/2022/03/

a-comprehensive-guide-on-recommendation-engines-and-implementation/.

(accessed: 26.02.2024).

[11] Ekstra Bladet. Codebench. 2024. url: https://www.codabench.org/competitions/

2469/?secret_key=98314b2c-9237-471e-905c-2a88bf6a1d8a#/pages-

tab. (accessed: 15.05.2024).

[12] Ekstra Bladet. RecSys Challenge 2024. 2024. url: https://recsys.eb.dk/.

(accessed: 23.05.2024).

[13] Salesforce Marketing Cloud. Predictive Intelligence Benchmark Report. 2014.

url: https://brandcdn.exacttarget.com/sites/exacttarget/files/

deliverables/etmc-predictiveintelligencebenchmarkreport.pdf. (ac-

cessed: 26.02.2024).

[14] Daniel Pleus | LinkedIn. url: https://www.linkedin.com/in/daniel-

pleus/?originalSubdomain=se. (accessed: 15.04.2024).

[15] Aparna Dhinakaran. Demystifying NDCG. 2023. url: https://towardsdatascience.

com/demystifying-ndcg-bee3be58cfe0. (accessed: 15.05.2024).

[16] Jeffrey Erickson. What Is JSON? 2024. url: https://www.oracle.com/

database/what-is-json/. (accessed: 27.05.2024).

[17] FastAPI. url: https://fastapi.tiangolo.com/. (accessed: 15.04.2024).

103

https://www2.deloitte.com/dk/da/pages/technology-media-and-telecommunications/topics/digital-consumer-trends/are-younger-generations-moving-away-from-traditional-news-sources.html
https://www2.deloitte.com/dk/da/pages/technology-media-and-telecommunications/topics/digital-consumer-trends/are-younger-generations-moving-away-from-traditional-news-sources.html
https://www2.deloitte.com/dk/da/pages/technology-media-and-telecommunications/topics/digital-consumer-trends/are-younger-generations-moving-away-from-traditional-news-sources.html
https://axios-http.com/
https://www.analyticsvidhya.com/blog/2022/03/a-comprehensive-guide-on-recommendation-engines-and-implementation/
https://www.analyticsvidhya.com/blog/2022/03/a-comprehensive-guide-on-recommendation-engines-and-implementation/
https://www.codabench.org/competitions/2469/?secret_key=98314b2c-9237-471e-905c-2a88bf6a1d8a#/pages-tab
https://www.codabench.org/competitions/2469/?secret_key=98314b2c-9237-471e-905c-2a88bf6a1d8a#/pages-tab
https://www.codabench.org/competitions/2469/?secret_key=98314b2c-9237-471e-905c-2a88bf6a1d8a#/pages-tab
https://recsys.eb.dk/
https://brandcdn.exacttarget.com/sites/exacttarget/files/deliverables/etmc-predictiveintelligencebenchmarkreport.pdf
https://brandcdn.exacttarget.com/sites/exacttarget/files/deliverables/etmc-predictiveintelligencebenchmarkreport.pdf
https://www.linkedin.com/in/daniel-pleus/?originalSubdomain=se
https://www.linkedin.com/in/daniel-pleus/?originalSubdomain=se
https://towardsdatascience.com/demystifying-ndcg-bee3be58cfe0
https://towardsdatascience.com/demystifying-ndcg-bee3be58cfe0
https://www.oracle.com/database/what-is-json/
https://www.oracle.com/database/what-is-json/
https://fastapi.tiangolo.com/

[18] GeeksForGeeks. Software Quality Assurance – Software Engineering. 2024. url:

https://www.geeksforgeeks.org/software- engineering- software-

quality-assurance/. (accessed: 06.05.2024).

[19] GitHub. GitHub Copilot - The world’s most widely adopted AI developer tool.

2024. url: https://github.com/features/copilot. (accessed: 26.02.2024).

[20] GCF Global. Digital Media Literacy: How filter bubbles isolate you. 2022. url:

https://edu.gcfglobal.org/en/digital-media-literacy/how-filter-

bubbles-isolate-you/1/#. (accessed: 16.05.2024).

[21] Google. Classification: ROC Curve and AUC. 2024. url: https://developers.

google.com/machine- learning/crash- course/classification/roc-

and-auc. (accessed: 15.05.2024).

[22] Impact of learning rate on a model - GeeksforGeeks. url: https://www.geeksforgeeks.

org/impact-of-learning-rate-on-a-model/. (accessed: 10.05.2024).

[23] Introduction to the TikTok recommendation system | TikTok. url: https://www.

tiktok.com/transparency/en-us/recommendation-system/. (accessed:

16.05.2024).

[24] Luxuan Wang Jacob Liedke. News Platform Fact Sheet | Pew Research Cen-

ter. Nov. 2023. url: https://www.pewresearch.org/journalism/fact-

sheet/news- platform- fact- sheet/?tabItem=5a0b8b87- 38bc- 42d6-

ba8d-2e666200e534. (accessed: 16.05.2024).

[25] Héla Ben Khalfallah. How Can We Measure Our Software’s Modularity and De-

pendencies? 2020. url: https://betterprogramming.pub/inside-software-

modularity-and-related-metrics-2e5af2b447dc. (accessed: 06.05.2024).

[26] Benjamin Kille et al. “The plista dataset”. In: Proceedings of the 2013 interna-

tional news recommender systems workshop and challenge. 2013, pp. 16–23.

104

https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://github.com/features/copilot
https://edu.gcfglobal.org/en/digital-media-literacy/how-filter-bubbles-isolate-you/1/#
https://edu.gcfglobal.org/en/digital-media-literacy/how-filter-bubbles-isolate-you/1/#
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://www.geeksforgeeks.org/impact-of-learning-rate-on-a-model/
https://www.geeksforgeeks.org/impact-of-learning-rate-on-a-model/
https://www.tiktok.com/transparency/en-us/recommendation-system/
https://www.tiktok.com/transparency/en-us/recommendation-system/
https://www.pewresearch.org/journalism/fact-sheet/news-platform-fact-sheet/?tabItem=5a0b8b87-38bc-42d6-ba8d-2e666200e534
https://www.pewresearch.org/journalism/fact-sheet/news-platform-fact-sheet/?tabItem=5a0b8b87-38bc-42d6-ba8d-2e666200e534
https://www.pewresearch.org/journalism/fact-sheet/news-platform-fact-sheet/?tabItem=5a0b8b87-38bc-42d6-ba8d-2e666200e534
https://betterprogramming.pub/inside-software-modularity-and-related-metrics-2e5af2b447dc
https://betterprogramming.pub/inside-software-modularity-and-related-metrics-2e5af2b447dc

[27] Layered Architecture in Computer Networks - GeeksforGeeks. url: https://www.

geeksforgeeks.org/layered- architecture- in- computer- networks/.

(accessed: 22.05.2024).

[28] Leaderboard. RecSys Challenge 2024. 2024. url: https://recsys.eb.dk/

#leaderboard. (accessed: 27.05.2024).

[29] Universidad Carlos III de Madrid. The impact of targeted Facebook advertis-

ing on the 2016 United States presidential election. 2018. url: https://www.

sciencedaily . com / releases / 2018 / 11 / 181119155940 . htm. (accessed:

16.05.2024).

[30] Matplotlib — Visualization with Python. url: https://matplotlib.org/.

(accessed: 09.05.2024).

[31] MIND recommender from scratch. url: https://www.kaggle.com/code/

danielpleus / mind - recommender - from - scratch / notebook. (accessed:

15.04.2024).

[32] MÖBIUS. MIND: Microsoft News Recommendation Dataset. url: https://

www.kaggle.com/datasets/arashnic/mind- news- dataset/data. (ac-

cessed: 15.04.2024).

[33] News Portal User Interactions by Globo.com. url: https://www.kaggle.com/

datasets/gspmoreira/news-portal-user-interactions-by-globocom.

(accessed: 22.05.2024).

[34] Nvidia. Recommendation System. 2024. url: https://www.nvidia.com/en-

us/glossary/recommendation-system/. (accessed: 26.02.2024).

[35] OpenAI. Introducing ChatGPT. 2022. url: https : / / openai . com / blog /

chatgpt. (accessed: 06.05.2024).

[36] Roman Panarin. Recommender System Using Machine Learning. 2024. url:

https : / / maddevs . io / blog / recommender - system - using - machine -

learning/. (accessed: 26.02.2024).

105

https://www.geeksforgeeks.org/layered-architecture-in-computer-networks/
https://www.geeksforgeeks.org/layered-architecture-in-computer-networks/
https://recsys.eb.dk/#leaderboard
https://recsys.eb.dk/#leaderboard
https://www.sciencedaily.com/releases/2018/11/181119155940.htm
https://www.sciencedaily.com/releases/2018/11/181119155940.htm
https://matplotlib.org/
https://www.kaggle.com/code/danielpleus/mind-recommender-from-scratch/notebook
https://www.kaggle.com/code/danielpleus/mind-recommender-from-scratch/notebook
https://www.kaggle.com/datasets/arashnic/mind-news-dataset/data
https://www.kaggle.com/datasets/arashnic/mind-news-dataset/data
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.kaggle.com/datasets/gspmoreira/news-portal-user-interactions-by-globocom
https://www.nvidia.com/en-us/glossary/recommendation-system/
https://www.nvidia.com/en-us/glossary/recommendation-system/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://maddevs.io/blog/recommender-system-using-machine-learning/
https://maddevs.io/blog/recommender-system-using-machine-learning/

[37] Justin Basilico & Yves Raimond. Deep Learning for Recommender Systems.

2024. url: https://www.nvidia.com/en-us/glossary/recommendation-

system/. (accessed: 26.02.2024).

[38] Danske Medier Research. Toplisten. 2024. url: https://www.fdim.dk/

statistik/internet/toplisten. (accessed: 26.02.2024).

[39] Chan Rosalie. The impact of targeted Facebook advertising on the 2016 United

States presidential election. 2019. url: https://www.businessinsider.com/

cambridge- analytica- whistleblower- christopher- wylie- facebook-

data-2019-10. (accessed: 16.05.2024).

[40] Data Scientest. The importance of Cross Validation. 2024. url: https://datascientest.

com/en/the-importance-of-cross-validation. (accessed: 28.05.2024).

[41] Shape Up: Stop Running in Circles and Ship Work that Matters. url: https:

//basecamp.com/shapeup. (accessed: 20.05.2024).

[42] Twitter Support. About Community Notes on X. 2024. url: https://help.

twitter.com/en/using-x/community-notes. (accessed: 16.05.2024).

[43] Amazon Web Services Team. Factorization Machines Algorithm. 2024. url:

https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.

html#. (accessed: 06.05.2024).

[44] CodeScene Team. CodeScene - Next generation code analysis. 2024. url: https:

//codescene.com/. (accessed: 26.05.2024).

[45] Databricks Team. What is MLOps? 2024. url: https://www.databricks.

com/glossary/mlops. (accessed: 26.05.2024).

[46] FastAPI Team. FastAPI Documentation. 2024. url: https://fastapi.tiangolo.

com/. (accessed: 28.05.2024).

[47] Flask Team. Flask Documentation. 2024. url: https://flask.palletsprojects.

com/en/3.0.x/. (accessed: 28.05.2024).

106

https://www.nvidia.com/en-us/glossary/recommendation-system/
https://www.nvidia.com/en-us/glossary/recommendation-system/
https://www.fdim.dk/statistik/internet/toplisten
https://www.fdim.dk/statistik/internet/toplisten
https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
https://datascientest.com/en/the-importance-of-cross-validation
https://datascientest.com/en/the-importance-of-cross-validation
https://basecamp.com/shapeup
https://basecamp.com/shapeup
https://help.twitter.com/en/using-x/community-notes
https://help.twitter.com/en/using-x/community-notes
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html#
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html#
https://codescene.com/
https://codescene.com/
https://www.databricks.com/glossary/mlops
https://www.databricks.com/glossary/mlops
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/

[48] Kubeflow Team. Kubeflow Documentation. 2024. url: https://www.kubeflow.

org/. (accessed: 28.05.2024).

[49] LightFM Team. LightFM Deep Dive. 2022. url: https : / / github . com /

recommenders - team / recommenders / blob / main / examples / 02 _ model _

collaborative_filtering/lightfm_deep_dive.ipynb. (accessed: 06.05.2024).

[50] LightFM Team. LightFM FAQ. 2022. url: https : / / making . lyst . com /

lightfm/docs/index.html. (accessed: 06.05.2024).

[51] MLFlow Team. MLFlow Documentation. 2024. url: https://mlflow.org/.

(accessed: 28.05.2024).

[52] Recommenders Team. DKN : Deep Knowledge-Aware Network for News Rec-

ommendation. 2020. url: https://github.com/recommenders-team/recommenders/

blob / main / examples / 00 _ quick _ start / dkn _ MIND . ipynb. (accessed:

07.05.2024).

[53] The NYT Open Team. Machine Learning and Reader Input Help Us Recommend

Articles | NYT Open. Jan. 2021. url: https://open.nytimes.com/we-

recommend-articles-with-a-little-help-from-our-friends-machine-

learning-and-reader-input-e17e85d6cf04. (accessed: 17.05.2024).

[54] The Guardian - Live World News on the App Store. url: https://apps.apple.

com/us/app/the-guardian-live-world-news/id409128287. (accessed:

8.05.2024).

[55] Tinder: Chat, Dating & Friends on the App Store. url: https://apps.apple.

com / us / app / tinder - chat - dating - friends / id547702041. (accessed:

08.05.2024).

[56] Twitter’s Recommendation Algorithm. url: https://blog.x.com/engineering/

en_us/topics/open-source/2023/twitter-recommendation-algorithm.

(accessed: 16.05.2024).

107

https://www.kubeflow.org/
https://www.kubeflow.org/
https://github.com/recommenders-team/recommenders/blob/main/examples/02_model_collaborative_filtering/lightfm_deep_dive.ipynb
https://github.com/recommenders-team/recommenders/blob/main/examples/02_model_collaborative_filtering/lightfm_deep_dive.ipynb
https://github.com/recommenders-team/recommenders/blob/main/examples/02_model_collaborative_filtering/lightfm_deep_dive.ipynb
https://making.lyst.com/lightfm/docs/index.html
https://making.lyst.com/lightfm/docs/index.html
https://mlflow.org/
https://github.com/recommenders-team/recommenders/blob/main/examples/00_quick_start/dkn_MIND.ipynb
https://github.com/recommenders-team/recommenders/blob/main/examples/00_quick_start/dkn_MIND.ipynb
https://open.nytimes.com/we-recommend-articles-with-a-little-help-from-our-friends-machine-learning-and-reader-input-e17e85d6cf04
https://open.nytimes.com/we-recommend-articles-with-a-little-help-from-our-friends-machine-learning-and-reader-input-e17e85d6cf04
https://open.nytimes.com/we-recommend-articles-with-a-little-help-from-our-friends-machine-learning-and-reader-input-e17e85d6cf04
https://apps.apple.com/us/app/the-guardian-live-world-news/id409128287
https://apps.apple.com/us/app/the-guardian-live-world-news/id409128287
https://apps.apple.com/us/app/tinder-chat-dating-friends/id547702041
https://apps.apple.com/us/app/tinder-chat-dating-friends/id547702041
https://blog.x.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm
https://blog.x.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm

[57] Understanding Layered Architecture: A Comprehensive Guide | by Satyendra

Jaiswal | Medium. url: https://medium.com/@satyendra.jaiswal/understanding-

layered-architecture-a-comprehensive-guide-4c2eee374d18. (accessed:

22.05.2024).

[58] Rui Vasconcelos. A guide to ML model serving. 2024. url: https://ubuntu.

com/blog/guide-to-ml-model-serving. (accessed: 02.05.2024).

[59] Dina Vozab. Tracking the Relationship Between Media Literacy and Political Par-

ticipation Across Different Generations. 2023. url: https://hrcak.srce.hr/

308325. (accessed: 16.05.2024).

[60] What is the Meaning of Latent Features? - GeeksforGeeks. url: https://www.

geeksforgeeks.org/what-is-the-meaning-of-latent-features/. (ac-

cessed: 10.05.2024).

[61] Wikipedia. Cold start (recommender systems). 2024. url: https://en.wikipedia.

org/wiki/Cold_start_(recommender_systems). (accessed: 28.05.2024).

[62] Summer Worsley. What is SQL? 2022. url: https://www.datacamp.com/

blog/all-about-sql-the-essential-language-for-database-management.

(accessed: 27.05.2024).

[63] Fangzhao Wu et al. Mind: A large-scale dataset for news recommendation. 2020.

108

https://medium.com/@satyendra.jaiswal/understanding-layered-architecture-a-comprehensive-guide-4c2eee374d18
https://medium.com/@satyendra.jaiswal/understanding-layered-architecture-a-comprehensive-guide-4c2eee374d18
https://ubuntu.com/blog/guide-to-ml-model-serving
https://ubuntu.com/blog/guide-to-ml-model-serving
https://hrcak.srce.hr/308325
https://hrcak.srce.hr/308325
https://www.geeksforgeeks.org/what-is-the-meaning-of-latent-features/
https://www.geeksforgeeks.org/what-is-the-meaning-of-latent-features/
https://en.wikipedia.org/wiki/Cold_start_(recommender_systems)
https://en.wikipedia.org/wiki/Cold_start_(recommender_systems)
https://www.datacamp.com/blog/all-about-sql-the-essential-language-for-database-management
https://www.datacamp.com/blog/all-about-sql-the-essential-language-for-database-management

Appendices

Appendix A

109

Noter fra mødet 16/02

• Vi har ikke mulighed for at få adgang til deres recommender system
• Dog kan vi få metadata
• Heller ikke mulighed for at tilgå API

• EB mener vi måske burde begrænse os

• Hvis vi både laver machine learning og mobil app kan det blive et meget stort
project

• Andre features man kunne overveje
• Ikke kun anbefale artikler, men også anbefale de næste artikler efter den

første

• Ting vi må få adgang til
• Vi kan bede om et dataset og så skal vi skrive en NDA
• Vi kan ikke få adgang til deres recommender system, men vi kan spørge ind

til det

• Info om deres recommender system
• Brugeren behøver ikke være logget ind for at få anbefalet artikler
• Onboarding starter allerede på forsiden

• Deres ønsker

• Named entity recogniztion
• Anbefal artikler ud fra navne fra de tidligere artikler, feks

• Navne
• Områder

• De har allerede den data, de bruger det bare ikke
• Hvordan evaluerer vi det?

• Få en masse venner til at prøve det gamle produkt og det nye
• De vil gerne ændre måden de anbefaler artikler på deres side
• Bruge generative AI til at give en forklaring på specifikke keywords

• Muligheder

• Vi kan ansøge om artikler, interval og så modtager vi resultater med artiklen
og NER + sentiment data

• Ellers kan vi træne vores egen model

Sv: Update from LAB

Hej LAB,

Det er læst og godkendt herfra.

Tak for mødet i går, og vi høres ved!

Kristoffer Hartwig
Produktudvikler

Mail: kristoffer.hartwig@eb.dk
Mobil: +45 60 14 18 65

Fra: Anders Mazen Youssef <amyo21@student.aau.dk>
Sendt: 14. marts 2024 12:55
Til: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>; Bence Szabó <bszabo21@student.aau.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>
Emne: Sv: Update from LAB

Hej Kristoffer,

Der er sket en del fremskridt på produktet og vi ville høre om du havde mulighed for et møde på �rsdag?
Vi tænker at forberede en powerpoint med de vig�gste punkter og præsentere det. Vi kan både mødes fysisk
eller online, hvad end passer dig bedst.

Derudover, så ville vi også spørge om det var muligt for jer at læse vores noter vi skrev ned under vores første
møde og bekræ�e om der er nogle misforståelser eller ej. Grunden �l det er så vi kan referere �l det i vores
rapport, i stedet for at lave et helt nyt interview som vi skal optage og transskribere.

Tak på forhånd!

- Anders, Bence & Louise

Fra: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Sendt: 14. marts 2024 09:19:53
Til: Bence Szabó
Cc: Anders Mazen Youssef; Louise Foldøy Steffens
Emne: Sv: Update from LAB

Hej igen!

Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
fr 22-03-2024 10:02

Til:Anders Mazen Youssef <amyo21@student.aau.dk>; Bence Szabó <bszabo21@student.aau.dk>;

Cc:Louise Foldøy Steffens <lfst21@student.aau.dk>;

Appendix B

These are all the images from the figma provided by Ekstra Bladet. These de-

scribe the design they wished for in the application.

112

113

114

115

116

Appendix c

117

SV: LAB Update + møde

Så er der kommet svar fra den gode Jesper Rix:

"Vi vil gerne undersøge mulighederne for at genskabe (eller dokumentere) den fysiske/cloud model-
serving setup (MLOps), som vi skal tage højde for, hvis appen når hele vejen til produktion og skal
offentliggøres for brugerne.
Vi er ved at ændre vores infrastruktur til kubernetes og Argo Workflow, med en inference server, som skal
hoste vores recommender systemer alá Pytorch Serve eller Nvidia tritonMen det nuværende setup er
noget vi selv har bygget med AWS CDK, hvor modellerne trænes i AWS Batch og er i produktion, som
Python services med Flask eller FastAPI i docker containere, som køres i AWS ECS. Selve modellerne
bliver gemt som artefakter på S3 og derefter hentet ind i de førnævnte services.
Så har vi en Go applikation, som bl.a. står routing mellem modeller og for at sætte A/B test op imellem
modeller eller forskellige kombinationer osv.Er det svar nok, ellers kan vi uddybe yderligere.
Mere specifikt indeholder det:
- Hvordan er model training / retrain / partial retrain konfigureret? (Er det 100% manual proces, eller er der
fx automatisk retrain efter en bestemt mængde ny data er kommet ind i databasen?)
Vores collaborative filtering modeller træner hver 2. time da de ellers har "cold start" problemer da ekstra
bladet udgiver mange artikler på 2 timer. De content baserede modeller trænes en gang i døgnet og er
mere robuste og kan godt håndtere "cold start" vi har kørt tests hvor vi kun trænede én gang på en uge
vs. hver dag hvor der var lidt bedre performance ved at træne hver dag.
Vi har endnu ikke kigget på metrik styret gentræning af modellerne.
- Hvordan bliver modellen deployed / udskiftet i deployment?
AWS ECS servicen bliver "re-deploy'et" hvilket tvinger containeren til at hente det nyeste artefakt ned.
- Hvordan bliver modellen monitoreret? (Opsætning af overvågningsværktøjer og advarsler for at opdage
problemer som datadrift, modelforringelse eller uventet adfærd)
Vi opsamler en masse data omkring modellernes performance, som vi har kigget på afledte effekter i
nyhedsstrømmen i, men det er ikke noget vi på nuværende tidspunkt bruger til monitorering, men det har
vi planer om.
Det eneste vi kigger på er salg eller CTR.
- Generelt om pipeline - Hvordan kommer ny kode / ny model fra developer til production?"
Her bruger vi CI/CD principper, så når en pull request på github merges til master/main sker
test+deployment automatisk.

--
Kristoffer Hartwig
Produktudvikler

Mail: kristoffer.hartwig@eb.dk
Mobil: +45 60 14 18 65

Fra: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Dato: tirsdag, 30. april 2024 kl. 09.28

Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
to 02-05-2024 08:47

Til:Louise Foldøy Steffens <lfst21@student.aau.dk>; Anders Mazen Youssef <amyo21@student.aau.dk>; Bence Szabó
<bszabo21@student.aau.dk>;

Til: Louise Foldøy Steffens <lfst21@student.aau.dk>, Anders Mazen Youssef
<amyo21@student.aau.dk>, Bence Szabó <bszabo21@student.aau.dk>
Emne: SV: LAB Update + møde
Hej alle,

Beklager langsommeligheden fra min side igen – det er som om der er sker noget nyt og uforudset
heroppe hver dag.

Spørgsmålet er sendt videre til Jesper Rix, som er af lederne i AI-enheden her i huset.

Ift. Figma, så sender jeg hele filen her:

 EB App.fig

Det er lettere rodet, men kig i ”Assets”, ”Newsreader” og endelig ”EB Ekstra - Next Gen” for det i
leder efter.

Vi ses!

/ Kristoffer

--
Kristoffer Hartwig
Produktudvikler

Mail: kristoffer.hartwig@eb.dk
Mobil: +45 60 14 18 65

Fra: Bence Szabó <bszabo21@student.aau.dk>
Dato: torsdag, 25. april 2024 kl. 13.58
Til: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Emne: Re: LAB Update + møde

Hej, og tak for mødet i dag!:)

Kan du muligvis sende Figma filerne til timeline og evt. andre nye idéer til appen?

Og her er vores tidligere MLOps spørgsmål med lidt mere beskrivelse:

Vi vil gerne undersøge mulighederne for at genskabe (eller dokumentere) den fysiske/cloud model-serving
setup (MLOps), som vi skal tage højde for, hvis appen når hele vejen til produktion og skal offentliggøres for
brugerne.

Mere specifikt indeholder det:

- Hvordan er model training / retrain / partial retrain konfigureret? (Er det 100% manual proces, eller er der fx
automatisk retrain efter en bestemt mængde ny data er kommet ind i databasen?)

- Hvordan bliver modellen deployed / udskiftet i deployment?

- Hvordan bliver modellen monitoreret? (Opsætning af overvågningsværktøjer og advarsler for at opdage
problemer som datadrift, modelforringelse eller uventet adfærd)

- Generelt om pipeline - Hvordan kommer ny kode / ny model fra developer til production?

Mvh,

LAB

From: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Sent: Monday, April 22, 2024 9:44:41 PM
To: Bence Szabó
Subject: SV: LAB Update + møde

Hej LAB,

9.25 er fint. Så sørger jeg for et møderum til os.

/ kristoffer

Fra: Bence Szabó <bszabo21@student.aau.dk>
Dato: mandag, 22. april 2024 kl. 17.24
Til: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>, Anders Mazen Youssef
<amyo21@student.aau.dk>
Emne: Re: LAB Update + møde

Torsdag formiddag kl 09:30 passer fint. :) Og det passer stadig fysisk hos jer? Hvis ja, hvad �d skal vi være ved lobbyen?

Mvh,
LAB

From: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Sent: Monday, April 22, 2024 9:20:46 AM
To: Bence Szabó
Cc: Louise Foldøy Steffens; Anders Mazen Youssef
Subject: SV: LAB Update + møde

Torsdag formiddag kunne være en god mulighed. Har dog noget der starter 11. Så hvis det er f.eks.
9:30 eller 10?

Fra: Bence Szabó <bszabo21@student.aau.dk>
Dato: søndag, 21. april 2024 kl. 12.28
Til: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>, Anders Mazen Youssef
<amyo21@student.aau.dk>
Emne: Re: LAB Update + møde

Desværre passer �rsdag ikke helt op�malt for os. Hvad med at mødes fysisk onsdag kl. 10 eller torsdag formiddag?

Mvh,

LAB

From: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Sent: Thursday, April 18, 2024 4:08:56 PM
To: Bence Szabó
Cc: Louise Foldøy Steffens; Anders Mazen Youssef
Subject: SV: LAB Update + møde

Hej LAB,

Godt at høre fra jer, og fedt med 3. sprint.

Sig til hvad der passer jer bedst ift at mødes i næste uge? Måske Tirsdag? (online / fysisk er op til
jer).

Ift de to specifikke spørgsmål, skal jeg sørge for at undersøge1, og sørge for at bringe 2 videre til
Johannes. Tak!

Vi høres ved,

Kristoffer

Fra: Bence Szabó <bszabo21@student.aau.dk>
Dato: torsdag, 18. april 2024 kl. 14.36
Til: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>, Anders Mazen Youssef
<amyo21@student.aau.dk>
Emne: LAB Update + møde

Hej Kristoffer!

Vi tænker at det kunne være en god ide at holde et opdateringsmøde, siden vi bliver færdige med vores 3.
sprint her på fredag. Hvilken dag ville passe bedst med dig, og vil du helst tage det over Teams eller fysisk?

Udover mødet, har vi lige et spørgsmål angående MLOps, og en vig�g observa�on �l EBNeRD datasæ�et.

Vi har et spørgsmål specifikt �l MLOps, som kunne være super brugbart i vores rapport:
Vil vi gerne undersøge mulighederne for at genskabe (eller i det mindste dokumentere) den
fysiske/cloud model-serving setup (MLOps), som vi skal tage højde for, hvis appen når hele vejen �l
produk�on og skal offentliggøres for brugerne. Vil det være muligt for dig at dele informa�on om disse
�ng?

Vi har opdaget en mulig exploit man kunne bruge �l at snyde i EBNeRD konkurrencen:
Under data-prepara�on fasen har vi lagt mærke �l at det er muligt at extracte data fra valida�on dataset
som resulterer i en overlap imellem training og valida�on clicks/noclicks. De�e skyldes at der er en del
overlap imellem clicked ar�cles i training history og valida�on history. Vi har valgt at �erne dem fra vores
validering for at sikre korrekte resultater, men hvis man ikke gør det, så vil omkring ⅓ af ens valida�on
AUC score være lige med training AUC score, som plejer at være markant højere end valida�on.

Kort sagt, er det selvfølgelig meget nemt at forudsige at en user vil læse en ar�kel, hvis der allerede er
data på at user’en har læst den specifikke ar�kel. Hvis vores observa�oner er korrekte, så kan det have
stor betydning for hvor gode EBNeRD konkurrencens bedste modeller i virkeligheden er.

Mvh,
Lab

Appendix d

123

Sv: Opdatering fra LAB

- Hvis vi skulle arbejde videre med appen / den måde machine learning er implementeret på,
hvad synes du ville være mest relevant / interessant at fokusere på?

Med ét ord : Nyhedsoplevelsen - altså både hvordan nyheder bliver udvalgt til brugeren, og
hvordan vi kan berige artiklerne med kontekst.

For at give lidt baggrund: Med appen kommer der til at være fokus på hvordan man får folk i alderen
18-28 til at blive mere engagerede i nyheder. Kan vi tilbyde dem (jer!) en værdi som man ikke får
andre steder, og som man i én eller anden grad vil være villig til at betale for?

Grunden til betaling er vigtig, er at jeg rigtig gerne vil dreje produktet væk fra at være optimeret til
klik/sidevisninger/annoncering, og hen imod et dedikeret fokus på nyhedsoplevelsen.

Som det er nu, ender man hurtigt i click-bait, sensationer og doomscrolling. Det mener jeg er
ærgeligt, fordi EB faktisk har en masse magtkritisk, god, sjov og vigtig journalistik at byde på.

Jeg antager, at vi kunne bruge recommendere til at give kontekst og indsigt i de enkelte artikler - og
til at tilbyde et nyhedsfeed som er bygget op om brugeren, og ikke om en nyhedsredaktion.

Om man vil starte med feedet, eller længere nede i artiklerne, er en smagssag som jeg ser det. Ville
nok starte med feedet.

- Hvad synes du om kommunikationen/samarbejdesprocessen igennem projektet?

Jeg synes klart i har leveret over forventning, også når jeg sammenligner med tidligere erfaringer i
samme felt. I har haft styr på jeres ting. I har været gode til at præsentere jeres fremgang. Jeg synes
det skinner igennem, at i er en god gruppe, som både er sympatiske, kompetente og seriøse. Om
noget, så skal det være min beklagelse, at det nogle gange har taget flere dage at få svaret på jeres
mails, eller skaffet kontakt til de rigtige mennesker her i huset.

Som product owner, føler du, at din feedback har haft en stor nok indflydelse på produktet?

Ja helt klart.

Her på EB benytter vi os den product management metodik, der hedder "Shape Up" og den vil sige
at jeg ikke må være alt for "præcis" i de opgaver som udviklerne får. Hvis vi skulle følge den, så jeg
bare have givet jer et skarpt problem, og konturerne eller formen på en løsning, som i så ville bygge.
Så i den sammenhæng har jeg nærmest haft for meget indflydelse :)

Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
fr 17-05-2024 13:13

Til:Bence Szabó <bszabo21@student.aau.dk>;

Cc:Louise Foldøy Steffens <lfst21@student.aau.dk>; Anders Mazen Youssef <amyo21@student.aau.dk>;

Shape Up: Stop Running in Circles and Ship
Work that Matters
Shape Up will help you break free of “best practices” that aren’t
really working, think deeper about the right problems, and start
shipping meaningful projects your team can celebrate.

basecamp.com

Håber det kan bruges - og sig til når vi skal følge op + vi skal have fundet en fredag, hvor i kommer
ind i præsenterer!

God weekend,
Kristoffer

Kristoffer Hartwig
Produktudvikler

Mail: kristoffer.hartwig@eb.dk
Mobil: +45 60 14 18 65

Fra: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Sendt: 17. maj 2024 08:11
Til: Bence Szabó <bszabo21@student.aau.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>; Anders Mazen Youssef <amyo21@student.aau.dk>
Emne: Re: Opdatering fra LAB

Hej alle tre,

Tak for mail og godt at se at i (i hvert fald Bence) havde tid til at nyde solen forleden

Jeg kommer tilbage med svar senere i dag. Der har været lidt meget run på heroppe og vil gerne lige tænke ordentligt inden jeg svarer.

I hører fra mig!

Sent from Outlook for iOS

From: Bence Szabó <bszabo21@student.aau.dk>
Sent: Wednesday, May 15, 2024 10:52:57 AM
To: Kristoffer Hartwig <Kristoffer.Hartwig@jppol.dk>
Cc: Louise Foldøy Steffens <lfst21@student.aau.dk>; Anders Mazen Youssef <amyo21@student.aau.dk>
Subject: Opdatering fra LAB

Hej Kristoffer! :)

Vi er ved at afslu�e vores sidste sprint, så vi har en lille statusopdatering:

App
- Vi er blevet færdige med den swipe-able ar�cle card komponent, og har e�er din feedback �lføjet et overlay
som forsvinder når man rører ved den (se screenshots).
- Vi har fixet en del minor bugs i appen, og har opdateret alle dependencies.

Model
- Det går ret godt med model training, vi får solid 0.9 training AUC and 0.89 tes�ng AUC med de tweaks vi har
lavet (se vedhæ�et screenshot).
- Når vi har trænet en model, så gemmer vi en package med configs, evalua�on data, og selve modellen. De�e
betyder, at man kan super nemt få et overblik over modellens konfigura�on og performance, og fortsæ�e med
at træne modellen.

Tes�ng og QA
- Vi har udvidet vores frontend og backend tes�ng for at sikre at al�ng virker som det skal.
- Når vi er færdige med at skrive tests, vil vi rydde både front-og backend op mht. modularitet, og vil
køre CodeScene sta�sk kodeanalyse på dem for at sikre at vores kode er klar og læselig.

Vi har også et par spørgsmål som er vig�g i�. rapporten:
- Hvis vi skulle arbejde videre med appen / den måde machine learning er implementeret på, hvad synes du
ville være mest relevant / interessant at fokusere på?
- Hvad synes du om kommunika�onen/samarbejdesprocessen igennem projektet? Som product owner, føler
du, at din feedback har ha� en stor nok indflydelse på produktet?

Når vi er helt færdige med kode-delen af projektet, vil vi også gerne give en afslu�ende præsenta�on, hvor vi
kan evt. diskutere de ovenstående spørgsmål, og snakke om hvad du egentlig synes om det færdige produkt. Vi
kommer med et forslag �l dato asap.

Mvh,
LAB

Appendix e

AI-powered tools

During the project, GitHub Copilot and ChatGPT 3.5 [35] are used to assist the

team’s workflow and overall efficiency. GitHub Copilot [19] is a context-aware

code completion tool used to boost coding speed. ChatGPT is primarily used

to give suggestions for fixing relatively simple technical issues and as a helping

hand in finding the right answers to questions that may arise during research.

ChatGPT is not treated as a reliable source.

Appendix f

This section contains details about the rest of the completed PBIs from Sprint 1,

which are:

• S1F1: As a user, I want to have a non-personalised news feed.

• S1F3: As a user, I want a header on my personalized feed.

• S1F5: As a user, I want to be able to see if I’m a plus member or not.

• S1F6: As a user, I want to navigate from the news feed to an article by

tapping on it.

• S1F8: As a user, I want to see a loading screen with Ekstra Bladet’s logo

when opening the application.

• S1F9: As a user, I want to see the correct fonts when using the app.

• S1F10: As a user, I want to have paragraphs in the article.

• S1F12: As a user, I want to see breaking news with special styling.

127

S1F1: As a user, I want to have a non-personalised news feed.

This PBI implements getting unfiltered news-feed which only shows the latest

news available. The personalised news-feed component has been altered to be

able to support this PBI. This means that all the styling and functionality is ex-

actly the same, and only the data is different.

S1F3: As a user, I want a header on my personalized feed.

This PBI addresses another component from the design provided by Ekstra Bladet.

9 The component for this PBI is the top bar of the landing page of the applica-

tion, it contains the title of each sub-view the user can access while also changing

appearance depending on the sub-view pressed by the user. There is also a logo

present next to the main header.

Figure 10: Top bar component

The logic for switching between the different sub-menus has also been imple-

mented, but other than the personalised newsfeed screen, they redirect to empty

screens.

S1F5: As a user, I want to be able to see if I’m a plus member or not.

This PBI focuses on implementing a component used to indicate whether the user

is subscribed to Ekstra Bladets premium subscription service. The component is

either blue if the user is subscribed, or grey if they are not. It is created as

a component so it can easily be implemented on any screen by the developer.

Currently, it is present on all screens following the product owner’s request.

128

Figure 11: Article screen with the subscription component implemented

S1F6: As a user, I want to navigate from the news feed to an article by

tapping on it.

This PBI addresses the previously missing feature of navigating to an article

when pressing the corresponding news card. This was done by using a function

to navigate the screen from the landing page to the article screen while passing

129

the article object onto the article screen.

Listing 1: Navigating to the article screen from the news feed

1 const handleOnPress = () => {

2 navigation.navigate(’Article’, { article: article });

3 };

Once in the article, the back-arrow button returns the user to the news feed screen

using the navigation.goBack() function.

S1F8: As a user, I want to see a splash screen with Ekstra Bladet’s logo

when opening the application.

This PBI is relevant in terms of presentation, and it was also fairly simple to

implement. DR Nyheder, TV2, Twitter, Facebook, and almost all other popular

apps use it so the screen contents loading are not visible to the user, and is

generally also considered a good design practice. The splash screen is shown

when the application is opened and presents the user with a logo fading in while

the app is loading, and fades out when the app is ready to be used by the user.

Note that an extra timer is added for a better user experience, otherwise the

splash screen would flash.

130

Figure 12: Splash screen shown while the app is loading

Afterwards, the screen smoothly navigates to the next screen, the news feed

showing the user their predicted articles.

S1F9: As a user, I want to see the correct fonts when using the app.

This PBI addresses the lack of specified fonts in the application and aims to im-

plement the same fonts used in the Figma provided by Ekstra Bladet. This was

done by adding a function that loads the relevant fonts placed within the "as-

sets/fonts" directory whenever the application starts. However, since the design

131

provided for the article screen did not mention which fonts were used, the fonts

for the said screen will be addressed in a later PBI when more information about

its design has been given. The group notes this and consults the product owner

at the following meeting.

Listing 2: Function which loads the specified fonts from the assets/fonts directory

1 const [fontsLoaded] = useFonts({

2 "WorkSans-Regular": require("./assets/fonts/WorkSans-Regular.ttf"),

3 "WorkSans-Medium": require("./assets/fonts/WorkSans-Medium.ttf"),

4 "Karla-Regular": require("./assets/fonts/Karla-Regular.ttf"),

5 "Karla-Medium": require("./assets/fonts/Karla-Medium.ttf"),

6 "InterTight-SemiBold": require("./assets/fonts/InterTight-SemiBold.ttf"),

7 "InterTight-Bold": require("./assets/fonts/InterTight-Bold.ttf"),

8 });

9

10 if (!fontsLoaded) {

11 return <Text>Loading...</Text>;

12 }

S1F10: As a user, I want to have paragraphs in the article

This PBI addresses the issue of how the body of an article is rendered. Before the

implementation of this PBI, the raw HTML code would be displayed to the user,

and it would not have any separation of paragraphs. This makes the body text

of an article incredibly difficult to read and hurts the user experience.

Fixing this was done by placing the body text within an array which splits each

paragraph by every HTML keyword for creating a new line, which is \n. Af-

terwards, the array is mapped through and rendered with a new line after each

paragraph.

Listing 3: Function which loads the specified fonts from the assets/fonts directory

1 const paragraphs = article.body.split(’\n’);

132

2

3 const renderedParagraphs = paragraphs.map((paragraph, index) => (

4 <Text key={index} style={globalStyles.bodyText}>

5 {paragraph}

6 {’\n’}

7 </Text>

8));

Additionally, an update to this backlog item was implemented in the following

sprint. This update addressed some other leftover HTML code that was discov-

ered later. In some articles, a piece of HTML code can be found which reads as

\––––- SPLIT ELEMENT ––––-. This was removed to increase readability for the

users. The implementation is similar to the previous and simply checks if the

next paragraph to be rendered is equal to the aforementioned remnant code, and

if so it returns a null value and proceeds to render the next paragraph.

S1F12: As a user, I want to see breaking news with special styling

This PBI aims to implement the functionality of presenting breaking news articles

with special styling. This feature is present on Ekstra Bladet’s website but is

absent in the design of the mobile application. Therefore, a design which was

inspired by DR was created and accepted at a meeting by the product owner,

Kristoffer. 13 Keep in mind that in the dataset provided by Ekstra Bladet’s data

science team, the articles do not have a property which indicate whether the

article is classified as breaking or not. The product owner, Kristoffer, accepted

this backlog item regardless at the aforementioned meeting.

S1B1: Construct a recommender model and train it on the EBNeRD

dataset.

To get a headstart in development, and because the EBNeRD dataset was not

available at the start of the sprint, a similar dataset was found, the MIND Mi-

133

Figure 13: An example of how breaking news are presented

134

crosoft News Recommendation Dataset (small), containing behaviour data for

approximately 50.000 users and 50.000 articles. [32]

Other than resembling the EBNeRD dataset, the MIND dataset has numerous

research papers documenting the AUC evaluation scores of numerous different

machine-learning models. The top performing ones were LSTUR, NRMS, and

DKN - all content-based filtering models. [63]

Therefore, a decision was made to attempt to implement one of these mod-

els. The implementation consisted of first training the models with the MIND

dataset, evaluating the models, exporting the models, loading the models, and

making predictions for a user in a realistic setting (how it would be done through

an API call). Since all models were initially black boxes for the team, it was cru-

cial to check if they could be used in the context of this project.

The group’s main findings were the following:

1. (DKN, LSTUR, NRMS, etc. are specially made for MIND, the generated

models are not compatible with PyTorch or Tensorflow, and the system

requires major rework for other datasets.

2. These systems were not meant to make it into production. Going off the

“intended path”, and attempting to transfer any of the models into practical

use is very painful.

3. Looking at academic papers, these systems give great results, but expand-

ing our knowledge is also difficult due to insufficient documentation of the

inner workings of the system and a lack of third-party resources.

4. Training and evaluating these models is incredibly slow.

5. Content-based filtering seems a lot less popular compared to collaborative

135

filtering, and therefore much more difficult to find helpful resources on.

Therefore, to be able to deliver value to the product owner with acceptable ve-

locity, the group decided to look into collaborative-filtering-based models.

As stated above, collaborative-filtering-based models are the more popular and

presumably easier option. This meant that there were more resources available

for learning. Furthermore, not using one of Microsoft’s models with rigid struc-

tures specifically made for the MIND dataset provided a lot more flexibility. Any

issues during development were also easier to tackle because the tools are of-

ten common across different machine-learning systems. The team also got the

impression that these models were also more scalable, and faster. Of course, a

large trade-off is the quality of predictions, which is the most important aspect

of the model - but being able to deliver a working product was deemed a higher

priority.

As a starting point, the team used Daniel Pleus’ (Machine Learning Engineer at

Google) [14] PyTorch collaborative-filtering model [31] with the MIND dataset.

As with the previous models, this first step was establishing that a full imple-

mentation was feasible. This meant that the model was trained and evaluated

on the MIND dataset, could be exported, and loaded to make predictions for a

single user. When this was successfully implemented, the data could be switched

out for Ekstra Bladet’s own.

The implementation includes loading the article data, history data, and behaviour

data. Then binary labels are generated for clicks and no-clicks. Following that,

users and articles are mapped with indices, which will be used as internal indices

for the model. Both training and validation sets must share the same mappings

to ensure consistency. Next, the data model and machine learning model itself

are defined. As of now, only userIDs and articleIDs are used as embeddings - of

136

course, more features should be added later to improve recommendation quality.

Next, the model is instantiated and trained.

S1B2: Evaluate the model using AUC and F1 scores.

F1 score and AUC scores are calculated using TorchMetrics modules. They are

added to the model’s code. A Tensorboard is also added to the notebook to log

loss after each training and evaluation epoch. This is done to see if the model

converges, or needs more training.

As expected, the AUC score is around 0.502, which is only slightly better than

random guesses. Without any features, nothing better was expected.

After talking to the product owner, it was established that the only evaluation

metric they are currently interested in is the AUC score.

S1B3: Make an API that returns a list of articles when requested for a

prediction using the model.

The currently implemented API solution uses FastAPI, a modern web frame-

work first released in 2018 for building RESTful APIs in Python. [17] On the

backend side, endpoints and pydantic validation models defining how requests

and responses should look are grouped in a single file, and utilities such as

make_predictions and get_all_news are put into their utility folder. They are im-

ported and called in the API file with the endpoints and pydantics. The trained

model is imported to make predictions, and all articles and a single user are

passed to the user for recommendation. In the future, the articles passed should

also be more specific, as a user interested in sports is most likely not interested in

sports news from several years ago. As of this sprint, a prediction request returns

the 10 highest-rated articles for the user.

137

Axios is used to communicate with the API on the frontend side. [9] Axios is

a library mainly used to send asynchronous HTTP requests to REST endpoints.

The code for it is encapsulated in a file called AxiosRequest and is imported on

screens where requests are made.

S1B4: Make the number of recommended news to a variable in the API call.

Changing the number of recommended news to a variable simply meant chang-

ing the request models, adjusting the Axios request accordingly, and passing the

number in the request to the prediction function.

Appendix g

This section contains details about the rest of the completed PBIs from Sprint 2,

which are:

• S2F1: Change the font in the article screen to one that looks better and is

more readable (Sans-Serif).

• S2B1: Include meaningful features in the machine learning model to im-

prove its performance.

S2F1: Change the font in the article screen to one that looks better and is more

readable (Sans-Serif).

This PBI is a continuation of a previous backlog item regarding the implemen-

tation of fonts, which was addressed in the previous sprint. 2 As previously

mentioned, there was a dependency on Ekstra Bladet’s side, as the fonts for the

screen showing the article could not be implemented before a design for that

screen was made.

During this sprint, a design was made and shared with additional information

138

regarding which fonts were used in the design. It was then implemented using

the same methods as the similar PBI from the previous sprint. A Sans-Serif font

was implemented as this font family is generally considered more reader-friendly

in body text.

S2B1: Include meaningful features in the machine learning model to improve

its performance.

Early during the sprint, the team explored the integration of sentiment analysis

as an additional feature within a binary classification model. The primary ob-

jective was to assess whether incorporating sentiment scores alongside user and

item embeddings could enhance the model’s ability to predict user engagement

with recommended articles. However, after initial experimentation, and follow-

ing advice from the supervisor, the team decided to pivot from this approach,

opting for a more straightforward solution using an off-the-shelf model. The

deciding reason for this was that the time saved on constructing a model and

integrating more meaningful features would be better spent working on provid-

ing a better overall system. After all, the point of this project is not to build a

machine-learning model from the ground, but to build a system that supports

one. Furthermore, being able to construct this fully original model would most

likely not give as good results as off-the-shelf options developed by a larger team

over a longer period.

Appendix h

Data Preparation

In the following paragraphs, a step-by-step walkthrough is given describing how

the data is prepared.

139

Load history and behaviour data This step is mostly self-explanatory. The EBN-

eRD history and behaviour parquet files are loaded into pandas dataframes.

Make temporary dataframe containing all article_ids_inview for every unique

user, because they are scattered in the behaviour dataframe The history dataframe

contains a unique row for each userID with a column containing all off the clicked

articles. What is missing is a row of all non-clicked articles.

Therefore, a temporary dataframe is made containing all articleIDs in view for

each unique user. In short, what the code does is it groups by user_id, flattens

article_ids_inview lists, and removes duplicates.

Listing 4: temporary inview dataframe

1 train_inview_temp = train_behaviour.groupby(’user_id’)[’article_ids_inview’].agg(

lambda x: list(set(y for sublist in x for y in sublist))).reset_index()

Below is a more thorough explanation of the code. Throughout each of these

steps, numerous sanity checks are done to ensure correctness.

train_behaviour.groupby(’user_id’): This part of the code is grouping the dataframe

train_behaviour by the column ’user_id’. This means that it’s grouping rows to-

gether where the ’user_id’ column has the same value.

0article_ids_inview0

: This specifies the column on which you want to perform aggregation. In this

case, it’s selecting the column ’article_ids_inview’ from the grouped dataframe.

.agg(lambda x: list(set(y for sublist in x for y in sublist))): This part applies

an aggregation function to each group. The aggregation function is a lambda

140

function, which is an anonymous function defined using the lambda keyword.

lambda x: This defines a function that takes a single parameter x, which rep-

resents the values in the ’article_ids_inview’ column for each group.

list(set(y for sublist in x for y in sublist))): Within the lambda function, this code

is creating a list of unique values by flattening the nested lists in each group’s

’article_ids_inview’ column. It iterates over each sublist in x (which represents

the values in the ’article_ids_inview’ column for a group), and for each y in each

sublist, it adds y to a set to ensure uniqueness. Then, it converts the set back to a

list to maintain the order.

.reset_index(): Finally, reset_index() is used to reset the index of the resulting

dataframe. By default, when you perform a groupby operation in pandas, the

grouped column(s) become the index of the resulting dataframe. This function

resets the index so that the ’user_id’ column becomes a regular column again.

Append article_ids_inview to history dataframe now that they are grouped by

user_id The temporary dataframe containing all inview articles for each unique

user can now be merged with the history dataframe on userID.

Make new column for unclicked articles by comparing clicked and inview

articles in history dataframe Now that the history dataframe contains both all

inview articles and clicked articles for every unique user, it is possible to ex-

tract non-clicked. This is done by adding every element to the new column from

inview articles entry which are not in clicked articled entry.

Listing 5: new column with all inview articles

1 train_history_with_inview[’non_clicked_articles’] = train_history_with_inview.apply

(lambda row: get_non_clicked_articles(row[’article_ids_inview’], row[’

141

article_id_fixed’]), axis=1)

Remove unnecessary columns A new dataframe is made only containing userID,

clicked articles, and non-clicked articles.

Restructure data, so every interaction (click and no click) has a single row,

and generate ratings column based on click or no click (1 for click, 0 for no

click) Right now, each unique userID has only a single row containing all of their

clicked and non-clicked articles. The next step is to create a new row for every in-

teraction. This is done by iterating through every clicked article and non-clicked

article for each user, and appending a new row to a new dataframe, which con-

tains userID, articleID, and either 1 for click or 0 for noclick in the new rating

column.

Listing 6: new row for every interaction

1 data = []

2

3 # Iterate over each row in merged_df_filtered

4 for index, row in train_history_with_unclicked.iterrows():

5 # For each item in article_id_fixed, add a row with rating 1

6 for item in row[’article_id_fixed’]:

7 data.append([row[’user_id’], item, 1])

8

9 # For each item in non_clicked_articles, add a row with rating 0

10 for item in row[’non_clicked_articles’]:

11 data.append([row[’user_id’], item, 0])

12

13 # Create the final dataframe from the collected data

14 train_history_with_rating = pd.DataFrame(data, columns=[’userID’, ’itemID’, ’rating

’])

Add topics column from article data using article_id (there are multiple topics

for a single article) Next, using the articles dataframe, each row is appended

with a new column containing all topics for a given articleID.

142

Listing 7: dataset

1 valid_history_with_topics = pd.merge(valid_history_with_rating, news[[’article_id’,

’topics’]], left_on=’itemID’, right_on=’article_id’, how=’left’)

Only keep the first topic for each article, and remove rows where topic is empty

(and rename the column genre for now) To simplify the data, only the first topic

is kept from the list of topics belonging to an article, and the few articles without

topics are dropped. If there are any duplicate entries for any userID itemID

combination, remove the duplicates This step is similar to many of the other

sanity checks done throughout data preparation. If by any chance, any duplicate

entries are detected - duplicates meaning userID articleID combination - they

are removed from the dataset. (Only for validation) Because the data is faulty,

some rows are both present in training and validation datasets. We remove

these from the validation data.

This operation is done by running the following code in the notebook:

Listing 8: removing common rows

1 # Assuming you have imported pandas as pd

2 common_rows = pd.merge(valid_history_with_topics, train_history_with_topics, on=[’

userID’, ’itemID’], how=’inner’)

3

4 if not common_rows.empty:

5 print("There are common rows between the two dataframes.")

6 print(common_rows)

7 else:

8 print("There are no common rows between the two dataframes.")

9

10 common_indices = common_rows.index

11 # Remove common rows based on userID and itemID combination

12 valid_history_without_matches = valid_history_with_topics[

143

13 ~valid_history_with_topics.set_index([’userID’, ’itemID’]).index.isin(

common_rows.set_index([’userID’, ’itemID’]).index)

14]

15

16 # Reset the index of valid_history_without_matches

17 valid_history_without_matches.reset_index(drop=True, inplace=True)

In short, common rows between the two datasets are identified, and using index

flagging, they are removed from the validation dataset. Below is a more thorough

walkthrough of the process.

Merging dataframes: The code starts by merging two dataframes, namely valid_history_with_topics

and train_history_with_topics on the columns ’userID’ and ’itemID’. It performs

an inner join, meaning it retains only the rows where there is a match in both

dataframes based on these columns. The result is stored in the dataframe com-

mon_rows.

Checking for common rows: The code checks if the dataframe common_rows

is empty or not. If it’s not empty, it means there are common rows between the

two dataframes, and it prints out those common rows.

Extracting common indices: The code extracts the indices of the common rows

from the common_rows dataframe. This is done to know what rows should be

removed from the validation dataset.

Removing common rows from validation dataset: Common rows are removed

from the valid_history_with_topics dataframe. This is done by first setting the

index of both dataframes, valid_history_with_topics and common_rows, to a

combination of ’userID’ and ’itemID’, then using boolean indexing to exclude the

rows that are present in common_rows. The result is stored in valid_history_without_matches.

144

Resetting Index: Lastly, indeces of valid_history_without_matches are reset to

ensure a continuous index starting from 0.

This step is optional, because it is also done in before model evaluation as well:

Listing 9: removing common rows alternative solution

1 test_interactions_excl_train = test_interactions - train_interactions.multiply(

test_interactions)

Save data as CSV Both training and validation data is saved as comma-separated

values files.

Now that data preparation is done, it is ready to be used with the LightFM

model.

Firstly, training and validation data is loaded using pandas.

LightFM requires internal mapping of userID and itemID. The mapping is shared

across training and validation to ensure consistency.

Listing 10: dataset mapping

1 dataset = Dataset()

2 dataset.fit(

3 users=pd.concat([train_data[’userID’], test_data[’userID’]]),

4

5 items=pd.concat([train_data[’itemID’], test_data[’itemID’]]))

Next, the model is instantiated and trained on the training set.

Listing 11: model instantiation and training

1 model = LightFM(loss=’warp’, no_components=NO_COMPONENTS,

2 learning_rate=LEARNING_RATE,

145

3 random_state=np.random.RandomState(SEED))

4

5 model.fit(interactions=train_interactions, epochs=NO_EPOCHS);

The parameters are kept as they were in the Microsoft deep dive example, but

should certainly be experimented with in the future.

S3F1: As a user, I want to see how much of an article I have previously read.

This minor UI improvement was implemented because it was a straightforward

task given that the scroll percentage of an article is already tracked in the app.

Although it does not directly contribute to the overarching sprint goal, it does

give value to the product owner, further improving potential user satisfaction.

The design of the progress bar outside an article (on the feed) was primarily

inspired by YouTube and Twitch, where the user’s progress having previously

watched a video is tracked.

Inside an article, this feature is essentially identical to DR Nyheder’s progress

bar, and it is also where the idea originated from. Users tend to check the length

of an article before reading it, but by getting a feel of progression with a live

progress bar, the user arguably has a more streamlined experience.

During a discussion with the product owner, it was also theorised, that if a user

sees a half-read article, they would be more prompted to tap on the article again

to finish it, having gained a sense of completion. Although this idea could be

connected to psychological principles in gamification, it is most realistic to state

that competitors’ implementation confirms this feature’s relevancy.

146

S3B4: Provide a visual representation for the training and validation AUC

scores for each epoch to depict improvements and convergence.

Currently, matplotlib is used to plot training and validation AUC developments.

To be able to track several models and save the data in a cleaner way, it would be

a good idea to implement a TensorBoard instead.

Appendix i

S4B5: Improve performance monitoring by using TensorBoard.

As mentioned in sprint 3, up until this point, matplotlib was used to visualize the

performance of the model. 9 And while this is a good general-purpose plotting

library [30], it was decided to switch to TensorBoard as it is a tool designed with

machine learning in mind.

TensorBoard can provide much more interactive visualizations such as scalar

plots, histograms, distribution plots, and more. In addition, TensorBoard makes

it easy to log the plotted data and compare the performance of multiple different

models at once. TensorBoard was easily integrated into the current notebooks of

this sprint, as the AUC scores per epoch were simply logged to TensorBoard and

then visualized afterwards in the TensorBoard interface.

Appendix j

147

Finding a publicly available dataset

to train and validate a potential rec-

ommender model on

Currently, it’s uncertain whether the team will be able to obtain access to Ekstra

Bladet’s article and user behaviour data in time. Therefore, it’s necessary to lo-

cate a comparable publicly available dataset. This will ensure the feasibility of

training and validating a model using data that closely resembles Ekstra Bladet’s

if access is not granted.

The best candidate for this purpose is MIND: Microsoft News Dataset. The

MIND dataset is available in demo, small, medium, and large sizes. The small

size contains 150.000 rows of behaviour entries and 50.000 rows of new article

data. MIND has been used in numerous scientific papers since its release in

2020, and seems to have enough data to support content-based filtering, collab-

orative filtering, and hybrid approaches. Furthermore, several implementations

of all three kinds of recommender systems can be found on GitHub, and some

of these are documented in scientific papers. [7]

Some other potential candidate datasets are the Globo, [33] Adressa, [1] and

Plista [26]. Globo seems to be more fitting for contextual filtering models, and

148

Adressa and Plista do not seem to be publicly available, so they are not explored

any further.

Appendix k

Context filtering

Alongside content-based and collaborative filtering, context filtering emerges as

a promising method for enhancing recommendation systems.

Context filtering adds contextual information about the users’ interactions to the

recommendation process. By applying all of these criteria and contexts into a

sequence, the recommendation system can better predict the probability of the

next action.

In an example given by Netflix at the NVIDIA GPU Technology Conference, they

trained a model on a sequence for a variety of users and their country, device,

date and time they watched a specific film. From this, they were able to predict

what the user would watch next. [37]

Although context filtering may not show as impressive results in itself as other

options, a hybrid approach including contextual information could be a promis-

ing prospect.

Appendix l

149

Figure 14: Model trained for 4000 epochs with 10 latent factors

Figure 15: Model trained for 4000 epochs with 20 latent factors

150

	Front page
	English title page
	Preface
	Contents
	1 Introduction and Motivation
	1.1 Initial problem description

	2 State Of The Art
	2.1 Mobile applications using recommender systems
	2.1.1 Twitter
	2.1.2 TikTok

	2.2 Recommender systems in news
	2.3 Recommender Systems
	2.3.1 Content-based filtering
	2.3.2 Collaborative filtering
	2.3.3 Hybrid approach

	2.4 Deployment of recommender systems - Model serving
	2.5 Model evaluation

	3 Analysis
	3.1 Context - Ekstra Bladet's data and current recommender system for web
	3.2 Course of action regarding MLOps
	3.3 Course of action regarding recommender implementation
	3.4 Problem statement
	3.5 Requirements

	4 Technology stack
	4.1 Development environment
	4.2 Application Technology
	4.3 Recommender Technology
	4.4 Potential off-the-shelf recommenders
	4.4.1 DKN
	4.4.2 LightFM

	4.5 Database
	4.6 System architecture

	5 Implementation
	5.1 System architecture in detail
	5.2 The Ekstra Bladet News Recommendation Dataset (EBNeRD)
	5.3 Agile workflow and collaboration with Ekstra Bladet
	5.4 Sprint 1
	5.4.1 Sprint Planning
	5.4.2 Sprint Review

	5.5 Sprint 2
	5.5.1 Sprint Planning
	5.5.2 Sprint Review

	5.6 Sprint 3
	5.6.1 Sprint Planning
	5.6.2 Sprint Review

	5.7 Sprint 4
	5.7.1 Sprint Planning
	5.7.2 Sprint Review

	5.8 Sprint 5
	5.8.1 Sprint Planning
	5.8.2 Sprint Review

	6 Quality Assurance
	6.1 Evaluation of the system
	6.1.1 Module cohesion
	6.1.2 Module coupling

	6.2 Code quality
	6.3 Model Quality
	6.4 User validation

	7 End product
	7.1 Mobile Application
	7.1.1 Personalised News Feed
	7.1.2 Article Interaction
	7.1.3 Swipe-able Article Cards
	7.1.4 User Behaviour Tracking

	7.2 Model Serving
	7.3 Model Training
	7.4 Cloud Database

	8 Discussion
	8.1 Reflections on the development process
	8.1.1 The product owner's reflections on the development process

	8.2 Technical difficulties
	8.3 Future work and scaling
	8.3.1 The product owner's thoughts on future work
	8.3.2 Leftover PBIs

	8.4 Ethical concerns

	9 Conclusion

