Educado

Redefining education, one initiative at a time

5th Semester Project Report

Social-Gamitied Learning Team

Aalborg University

Sofware

Copyright © Aalborg University 2023

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Educado - Redefining education, one

initiative at a time

Theme:
Complex Frontend Software and Com-

plex Backend Software

Project Period:

Fall Semester 2023

Project Group:

Social-Gamified Learning Team

Participant(s):

Amalie Pernille Dilling
Anders Mazen Youssef
Bence Szabo

Freja Liiders Rasmussen
Louise Foldey Steffens
Magnus Peetz Holt

Supervisor(s):

Daniel Russo
Copies: 1
Page Numbers: [135|

Date of Completion:

December 15, 2023

Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

In collaboration with the Univer-
sity of Brasilia and Brazilian waste-
pickers, Aalborg University’s 5th-
semester software students further
developed the Educado platform
through six sprints in a mock-realistic
agile environment. This report
provides an overview, emphasising
a social-gamified learning approach.
Evaluation includes challenges in Ag-
ile implementation, repository man-
agement, database handling, cover-
ing misinterpretations, communica-
tion bottlenecks, and acceptance cri-
teria issues. Repository challenges
affected backend and mobile de-
velopment, encompassing code and
database issues. Integration team
challenges and the product owner’s
role are explored. The conclusion
highlights project achievements in
stability, usability, and gamification,

addressing technical debt and cross-

team communication challenges, and

offers insights for future projects.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

Preface

Amalie Pernille Dilling
adilli21@student.aau.dk

Bence Szabo

bszabo21@student.aau.dk

Louise Foldey Steffens
Ifst21@student.aau.dk

Aalborg University, December 15, 2023

Anders Mazen Youssef

amyo2l@student.aau.dk

Freja Liiders Rasmussen

flra21@student.aau.dk

Magnus Peetz Holt
mph21@student.aau.dk

Bence Szabo

Bence Szabo

Bence Szabo

Bence Szabo

Bence Szabo

Bence Szabo

Preface vi

We want to thank the individuals and groups who played an important role in
this project. As some of the following individuals are mentioned throughout the

report, this section serves as an overview of the people involved.

First, we want to thank Luiza Cardoso Queiroz Melo, who contributed as the

product owner of the Educado project.

We also want to extend our gratitude to Frederik Bode Thorbensen, who acted

as the repository manager.

Additionally, we want to acknowledge Daniel Russio, our semester coordina-

tor who also acted as a stakeholder fulfilling the management role in the project.

Finally, we would like to express our gratitude to the development teams that

worked alongside us:

Group 1: Certificate Issuance Team

Group 2: Video Streaming Team

Group 4: Virtual Tutor Team

Group 5: Onboarding Team

Group 6: Offline Accessibility Team

Contents

[Prefacel
1 Introduction
[1.1_ Educado
1.2 Th xus Fram rk ...
121 Roles

(1.4 Al-powered tools|,
[2 State of the Project|
.1 Initial Database Diagram|.
&
.2 Adjustments before the firstsprint|
J P
221 Backend
2.2 Frontend formobilel L.
[2.2.3 Preparing the development environment|
[2.2.4 GitHub actions, templates, and static code analysis

Sprints 1-2: Stabilisation and Enhancement|

1

print1
[3.1.1 Sprint Planning . . .
[3.1.2 Sprint Review|

[3.1.3 Sprint Retrospective|

vii

o U1 W N

11
12

13
14
14
14
15
15
16

Contents viii

2 Sprint2 ... 27
[3.2.1 Sprint Planning 0o 000000 27
[3.22 SprintReview|. 34
[3.2.3 Sprint Retrospective| L. 35

4 Research on social-gamified learning experience 37
................................... 37
4.1.1 What is social gamification?|. 37

.12 Why is social gamification a good thing?| 38

[4.1.3 4 Phases of the gamification journey 39

.14 Framework for social gamification| 43

M2 Stateoftheart. 44
421 Duolingol. o 45

422 Brilliant] 50

2 -conclusion| Lo Lo 52

[5 Sprints 3-6: Gamification 53
................................... 53
p.1.1 SprintPlanning 54

.12 SprintReview|. 00 0L 67

[5.1.3 Sprint Retrospective| L. 68

2 Sprintd 68
[.2.1 Sprint Planning 0000000 69
522 Validationtest|. 74
[5.23 SprintReview|. 0 L. 75
[>.2.4 Sprint Retrospective| 00 0L 76

................................... 77
p.3.1 Sprintplanning 78
[.3.2 SprintReview|. o oo oL 91

[5.3.3 Sprint Retrospective| o000 93

Contents

.41 Sprintplanning o 00000

[5.4.2 SprintReview|.

[5.4.3 Sprint Retrospective| L.

[6 System Architecture|

6.2 CI/CD . . . e

[6.2.1 CI/CD for this project

[7 Quality Management

[7.1 Unit Testing]

[7.1.1 Mobile (Frontend) Unit Testing

[7.1.2° Backend Unit Testing|

[8.1 Issues with implementation of Agile

[8.2 Issues with the received repositories

I with

na aatabasel L0000 e o d d e e e e

{8.4 Evaluation of degree of Gamification|.

[8.5 Integration teamissues|.o 0oL

Pr

9 Conclusion|

n

94
95
104
106

108
108
110
111
113

116
116
117
117
119
120
120

123
123
125
126
126
127
128

130

Chapter 1

Introduction

This paper documents the process of taking on and further developing a com-
plex full-stack software solution. The project is a part of the Educado Initiative, a
free educational platform targeting Brazilian waste pickers, consisting of a cross-
platform mobile application for the aforementioned users, a web application for

the creators, and a backend connecting them and the database [13].

The main challenges this project proposes are taking on a complex software sys-
tem, analysing it, and achieving further goals in individual teams following an

agile framework.

Select sections of this paper were written in collaboration with other teams working along-
side the team of this paper. The start and end points of collaborative sections are indicated

with disclaimers.

Collaborative writing begins
In this semester’s project, multiple teams work together on the same project. In
total, there are six full-stack teams and each team is between five and six stu-

dents. Each team has its theme for the project, and its product backlog items

1.1. Educado 3

(PBISs) that they are responsible for, but the final product will be the same for all
groups. Though all the teams are collaborating on the same project, some parts of
the project are more relevant for some teams than others. The final product will
be represented as both a website and an Android application. Therefore, some
teams mainly focus on the website, while others focus on the Android applica-
tion. To coordinate and work with multiple teams on the same project, finding
a good development methodology is essential. The Agile software development
methodology, with the use of the Scrum framework scaled with Nexus, has been
used to ensure high-quality software development. In addition to working in a
larger development environment, an important part of this project is to inherit
code written by other students and use this for further development. The code
written in this project is based on a four-year-old code base from the students of
AAU in Aalborg in 2019. Last year, in 2022, it was rewritten and further devel-
oped by 5th-semester software students in Copenhagen. Even though the initial
sentiment was to avoid modifying the existing code base where possible, a lot of
changes and reworks of the inherited code were needed. This year UI designers,
who are students from the University of Brasilia created a completely new de-
sign. In addition, the code had not been maintained for over a year and did not
follow the guidelines for this year’s project.

Collaborative writing ends

1.1 Educado

Collaborative writing begins
The project is part of the Mobile Education Project (MEP), which was formed
in collaboration with Aalborg University (AAU) and the University of Brasilia
(UNB) in 2019 for the SGDC initiative. Educado is a part of the MEP with a focus
on improving the life situation of waste pickers in Brazil. At UNB the students of

this semester and the last semester have been working on user journey mapping,

1.1. Educado 4

user interface design, content creation, as well as product management in terms
of users’ needs and their journeys. The project is made in close collaboration
with the product owner, the stakeholders, and the intended users of the product
in Brazil. AAU will be responsible for the development of the Educado mobile
application and the web application, while UNB will be responsible for the de-

sign and requirement criteria.

As part of the Educado project, this collaborative effort was dedicated to en-
hancing the educational prospects of waste pickers through digital learning. Ed-
ucado serves as a platform designed to connect with waste pickers and address
their educational needs. The primary objective is to offer free access to educa-
tional resources and improve the quality of life for the Brazilian population. To
maintain user engagement, the app will also offer education through a gami-
tied experience. The layout will be created to provide users with visual designs
and animations that will reward them for learning and provide the maximum
amount of educational content possible. For the content to be accessible to the
target group, there will be a specific emphasis on the development of a web ap-
plication for qualified content creators. The content creators should, in the web
application, be able to provide a variety of courses, which should be appealing

to the users.

The project also takes part in both the Sustainable Development Goals (SDG)
and the European Region Action Scheme for the Mobility of University Students
(ERASMUS). ERASMUS is the European Union’s program to support education,
training, youth, and sport in Europe [14]. Educado was one of the projects that
received funding this year (2023). The SDG is the United Nations” 17 goals for
sustainable development [27]. A meaningful part of the work done by software
developers and engineers is developing solutions that contribute to a better fu-

ture. A way of making sure of that is to have the SDGs in mind. In Brazil,

1.2. The Nexus Framework 5

waste pickers and other low-income groups lack access to basic and professional
education and have poor social conditions. Therefore, as stated by the projects’
product owner (PO), Luiza Cardoso Queiroz Melo, this project aims to provide
access to a tailored educational experience in an easy, quick, and dynamic way,
to keep the waste pickers engaged and interested in learning [4]. The project’s
main focus will be to achieve this by providing a mobile education platform for
waste pickers in Brazil. However, the project can be up-scaled and help not only
waste pickers but also other vulnerable groups around the world. Therefore, if
the project is successfully implemented, one could argue that it will affect mul-
tiple SDGs. Such as goal number four: quality education and goal number eight:

decent work and economic growth [27]].

When it comes to the education part, there are multiple ways the Educado project
can have an effect. On one hand, one can use the Educado app as inspiration and
a stepping stone into applying to different educations. On the other hand - if
there are quality professors that contribute with different courses on the app,
and if Educado could collaborate with universities as well as both governmental
and private organizations, the app could create certificates, that would be ap-
proved as a form of alternative education. This way, Educado can work as an
alternative education itself. Either way, it could be argued that all forms of edu-
cation are great, and especially for vulnerable people even a basic education can
have a significant positive effect on their quality of life.

Collaborative writing ends

1.2 The Nexus Framework

The project is structured in accordance with the Nexus Framework, which lever-
ages Scrum principles and employs an iterative and incremental approach to scal-

ing software and product development methods [24]. Applying a scaled version

1.2. The Nexus Framework 6

of Scrum in this project is logical since 6 teams are working on the same prod-
uct in parallel, introducing a unique set of problems. These problems include
increased difficulty in coordination, collaboration, and communication. Tackling
the issues effectively will mean delivering value to the customer with a satisfac-

tory frequency.

The following paragraphs are based on Scrum.org’s introductory video [23]]. Any

changes made to the original Nexus Framework are clearly stated.

The Nexus Scaled Scrum Framework consists of roles, events, artefacts, and the
rules that bind these elements together [23]. In this project, the Scrum teams
work from a single product backlog. Following the Nexus guidelines, unlike
in Scrum, product backlog refinement is strongly encouraged. Here, the Scrum
teams decide which team delivers which product backlog items, and identify de-

pendencies across teams.

During Nexus sprint planning, the activities of all of the teams during the cur-
rent sprint are coordinated. Furthermore, the product owner provides domain
knowledge and guides selection and priority decisions regarding product back-
log items. Each team validates and/or makes adjustments to the ordering of the
PBI’s, and sprint planning is complete when all teams have finished their indi-
vidual sprint planning events. Sprint planning also results in a sprint backlog:
a composite of a team’s product backlog items, highlighting dependencies and

flow of work. It should be updated daily - often as part of the daily Scrum [23].

Following the Nexus Framework principles, a daily Scrum meeting is to be at-
tended by representatives from each team. During these meetings, the state of
each team’s respective increment, and any integration or dependency-related is-

sues are discussed. The new information and developments are subsequently

1.2. The Nexus Framework 7

transferred to each group by their representative and are discussed [23]. For a
smoother workflow, this project works with a slightly modified Nexus Frame-
work. Daily Scrum meetings are held internally in the team, and semi-regular
integration team meetings are held every 2-3 workdays. The handling of de-
pendency and integration-related issues and transparency are secured by docu-
mented and open communication through representatives from each team. This

choice was made due to time constraints.

At the end of each sprint, which in this case is every 2 weeks, a sprint review is
held. During the sprint review, the product owner (and potentially other stake-
holders) provides feedback on the integrated increment [23]. The product back-
log is adapted accordingly if needed.

A sprint is concluded with a Nexus sprint retrospective, which is a formal oppor-
tunity for a Nexus team to inspect itself and create a plan for improvements to be
enacted during the next sprint. This ensures continuous improvement. During
the sprint retrospective, the integration team meets and makes issues transpar-
ent to other teams. Furthermore, each Scrum team holds their own retrospective
meeting and proposes actions to address the potential issues. Lastly, the rep-
resentatives come together again and agree on how to visualise and track the

identified actions to improve [23].

1.2. The Nexus Framework 8

The Nexus Scaled Scrum Framework

Nexus Sprint Retrospective

Product Nexus Sprint Nexus Sprint
Backlog Planning Backlog

Integrated
Increment

== %\ N =Y :;

Figure 1.1: Nexus Scaled Scrum Framework

1.2.1 Roles

The roles used in the framework are product owner, repository manager, Scrum

team (developers) including a Scrum master, and integration team.

The product owner of this project is Luiza Melo; a Strategy and Project Man-
agement Analyst at Nubank and a Production Engineering student at the Uni-
versity of Brasilia. The product owner is a domain expert whose skills are used to
translate user needs to product backlog items, formulated as user stories. Since
the Scrum team does not have direct contact with the users themselves, product
backlog items must be accepted by the product owner to be considered done. It
is therefore also important to frequently consult the product owner. It is also the
product owner’s responsibility to manage the product backlog and ensure value
maximisation so that all the work done contributes to the business objectives.
This is done by making refinements to the product backlog and correctly priori-

tising PBIs based on size and value .

1.2. The Nexus Framework 9

The repository manager of this project is Frederik Bode Thorbensen, who is
a Software Engineering student and Research Assistant at Aalborg University
Copenhagen. Their responsibility is handling code that is accepted into produc-

tion.

The Scrum team is responsible for self-organisation according to the standards of
the applied Scrum framework, and delivering done increments at the end of each
sprint [23]. See more about the definition of done (DoD) in section Every
Scrum team also has a Scrum master, who ensures that the Nexus framework is

correctly applied in practice.

The Integration team consists of a representative from each Scrum team. This
team is responsible for ensuring that a done and integrated increment is pro-
duced at least once every sprint.. This also includes the aforementioned pro-
cesses described in section The integration team also fulfils a crucial role
in interpreting and addressing issues related to the Agile process during sprint

retrospectives.

Stakeholders

Before the first sprint, the main stakeholders of the project are identified, dis-
cussed, and placed on a stakeholder map. The map placements are based on two
axes, that represent the stakeholders’ stake in the product and their influence

over the product respectively.

Below is a digitalised version of the stakeholder map done by the Nexus Team.

This mapping was done before the first sprint and was not adjusted afterwards,

1.2. The Nexus Framework 10

despite the conflicting opinions of the team in this paper.

Stakeholder Map

Identify your stakeholders and determine how to involve them
@ and create valuable products together

Latents

involve as needed

influence over the product

Future Software
Environmental Students

Organisations

Brazilan Waste Pickers Recycling
Government Facilities I

The stake in the product
Liberators _J
\ Thea Schukken - Beeld in Werking’

Figure 1.2: Stakeholders of the project

Stakeholders of the project are categorised depending on their level of influence
over the product and their stake in the product. At the highest level of influ-
ence and stake, Promoters are identified as the group that requires extensive
involvement. Content creators and Erasmus are included in this category, with
the group’s subjective opinion favouring Erasmus as a better fit for the defender
category at this time. Erasmus is not directly involved, nor do they have any sub-
stantial influence over the product. Without content creators, the application is
virtually useless, so taking their needs seriously and consulting them as often as
possible is essential. Defenders are to be engaged actively if possible since they
have a lot of stake in the product. According to the group, waste pickers should
also be considered to have greater influence over the product, because they are

the core users, and will be involved in validation tests. The Latents category

1.3. Definition of done 11

includes actors with major influence, but less stake in the product. This cate-
gory includes Daniel Russo, who practically fulfils the management role in the
Agile process. The team in this paper would most likely place Daniel Russo as
someone with more stake in the product. The Audience category, which includes
Environmental Organisations, Future Software Students, the UN, and the Brazil-
ian Government, is positioned to be informed when needed, indicating a lower
level of influence and stakes in the product. The team would place future soft-
ware students considerably lower on the scale of influence, however, developers

should consider future tasks throughout the project.

1.3 Definition of done

In the context of agile methodology, the definition of done represents a consen-
sus reached by a product team regarding the specific criteria that must be met to
categorise product backlog items as fully completed [22]. The integration team
has formulated these points as an improved version following an initial attempt
that was less than satisfactory. Any changes to the DoD should be done with
extreme care since all previously accepted items must be re-evaluated if a change
is made. If this results in decreased value delivered for the customer, it is not an

advisable decision.

The DoD for this project consists of the following points:

1.4. Al-powered tools 12

All code must Every function The project must All design Update readme

isn o All APl routes
T needs_a A PBIisn't follow the Clean must follow file describing
standardized done before it Architecture ; how to execute must follow
coding comment explaining 5 desEnpatern the design Ep—— i ft
SRR its functionality, is on the s guide found gl e Microso
arameters and i i i
agreed upon D staging branch microservices on miro e conventions
Create/Give a short No hardcoded Stale branching. All routes (front-
variable/function variables APBIisn't done, e":) aEd”b;‘k'
name that still gives - end) shall have
a full meaning of its should be i all il exception
functionality. Camel used in the branches have handling
Case. code been closed (try/catch)

All features on the
mobile
application must
be tested on an
android phone or
emulator

Don't push code
that hasn't been
put through our
test stack and
passed

Ensure that all code
includes relevant
tests, such as unit
tests using Jest,
linting, and
integration tests.

Figure 1.3: Definition of done

1.4 Al-powered tools

In this project, GitHub Copilot [15] and ChatGPT-3.5 [3] are used to assist the
team’s productivity and workflow. ChatGPT is primarily used to give sugges-
tions for fixing relatively simple issues with JavaScript code and CSS. ChatGPT
is not treated as a reliable source, but rather a helping hand. GitHub Copilot
is applied as a code completion tool, providing contextually aware code sugges-

tions, thereby boosting overall productivity.

Chapter 2

State of the Project

Since this project has been worked on by several teams beforehand, the first step

is to understand and document its current state.

The relevant repositories for the Nexus Team are educado-frontend, educado-
mobile, and educado-backend. This paper focuses on the educado-mobile and
educado-backend, since the social-gamified learning aspect only directly works
with these repositories. The frontend repository is not relevant as it contains the

code for the web application.

The mobile app uses the Expo framework, a software library extending on the
React Native open-source Ul software framework. For styling, Nativewind (Tail-
wind for React Native) is used, although it is only partially implemented, so the

app still uses vanilla CSS in some instances.

The backend follows the clean architecture design principles and uses Amazon
Web service as its cloud infrastructure provider (AWS). It employs Node.js and
Express for a streamlined backend server, Axios for HTTP requests, and Mon-

goDB for the database.

13

2.1. Initial Database Diagram 14

2.1 Initial Database Diagram

The initial database diagram is made in collaboration with the other teams and
can be seen in figure The diagram is too simple compared to what the
application should be able to do. Compared to the mobile repository and its
endpoints, the two repositories do not align, and as a result, a lot has to be

resolved before any enhancement work can be started.

User Course

Section

1
0..”

Component

Figure 3.6: Initial data model

Figure 2.1: Figure of the initial database diagram

2.2 Adjustments before the first sprint

2.2.1 Backend

The first and most important thing to be done before the project is ready for fur-

ther development is to change the cloud storage solution for the backend from

2.2. Adjustments before the first sprint 15

AWS to Google Cloud Platform (GCP). This means that the keys for communica-
tion with the cloud and database have to be changed, which delays the ability to
make further changes and actually see what the app is supposed to do in action.
The keys are published to the developers one week after the initial start of the
first sprint. After the keys are acquired, it is possible to create a link between
the mobile application and the backend. This has to be done almost from pure
intuition since the README files in the two projects are either outdated or lack a
lot of necessary information. See more about how the README issue is tackled

in section

Testing the backend repository is made possible with the Jest framework and
setting up a MongoDB memory server. The Jest framework handles the setup of
the test environment including mocking data, assertions, testing utilities and a
lot more to ensure efficient and reliable testing of Javascript code [21]. The Mon-
goDB memory server serves as an in-memory database for testing and therefore

makes sure that the test cases do not affect the production database.

2.2.2 Frontend for mobile

The frontend for the mobile application does not currently have a shared stylesheet
for the different screens and components. To add to that, the different compo-
nents and screens use vanilla CSS at the bottom of each file, even though the
project is using Nativewind CSS. This is changed so that the components and
screens share one styling defined in a Tailwind configuration file, to centralise

the different fonts and text sizes, as well as simplify them.

2.2.3 Preparing the development environment

The environment needed for the mobile application includes Xcode for IOS users

and Android Studio for Android users. These tools are used to emulate the mo-

2.2. Adjustments before the first sprint 16

bile application on a computer. Before the emulators can be used, a part of the

project’s dependencies have to be updated.

Another essential step in setting the environment up is to get the frontend and
backend to run simultaneously so that communication with the database is pos-
sible. This setup phase includes preparing Docker, MongoDB Compass, and the
backend repository with updated keys.

The README files for the respective repositories were not updated by previ-
ous contributors either, so one of the first steps in the project is to update these
files including setup instructions and fixes for specific errors that may arise dur-
ing the setup process. The group published a README for both frontend setup
and getting the frontend and backend to communicate in a local environment.

These README files are made available for all of the other teams as well.

2.2.4 GitHub actions, templates, and static code analysis

The Scrum Teams are provided with Issue and Pull Request templates to stream-
line collaboration and give a unified look to dependencies and commits. A static
code analysis tool suggested for the developers is CodeScene, which is a tool
used to enhance the quality of the project’s code [8]. It gives helpful suggestions
for problematic functions and possible ways to reduce complexity by extracting
code into their own functions, etc. Unfortunately, monitoring changes over time
is not available to the team, since it requires a pro account to access an organ-
isation with multiple repositories. As a workaround, the staging branches are
cloned at the end of each sprint, and their current state is inspected. Lastly, the
backend is meant to seamlessly integrate microservices by integrating Docker

into the project, to decentralise some of the core features of the project.

Chapter 3

Sprints 1-2: Stabilisation and En-

hancement

The sprints documented in this section are the structured and iterative develop-
ment cycles approached in the project, where specific tasks and goals from the
product backlog are addressed. Each sprint includes the aforementioned key ac-
tivities such as Sprint Planning, Sprint Review, and Sprint Retrospective. They
are documented to offer a comprehensive overview of the project’s progress and

insights gained from each iteration, promoting flexibility and adaptability.

The first two sprints of the project focus on the stabilisation and enhancement

of already existing features of the application, backend, and web platform.

3.1 Sprint1l

The overarching sprint goal is the following: “Stabilise and enhance existing fea-
tures of the Educado platform, focusing on design improvements, usability fixes, and
performance optimisation. Prepare the foundation for future feature integrations while

ensuring a robust and user-friendly experience for both content creators and learners.”

17

3.1. Sprint 1 18

In the following sections, the sprint backlog items are discussed individually.
They are planned and developed in pairs, and additional reviews are conducted
internally by other pairs from the group (before external code reviews). Further-
more, since this is the very first sprint of the team, many mistakes are expected
and is generally regarded as a valuable learning experience rather than a fully

viable development period compared to later sprints.

3.1.1 Sprint Planning

As all sprints do, this sprint starts with sprint planning. As described in chapter
the forthcoming activities and objectives of the team are clarified, adjusted
and coordinated, resulting in a sprint backlog. This backlog includes the product

backlog items that the team strives to deliver during the sprint.

Sprint backlog:

* App Login: As a non-logged in user, I want to have the ability to preview

the app, so that I can understand the application before register/login

¢ App Home: As a waste picker, I want to view when I don’t have an active

course (empty state)

e App Profile: As a waste picker, I would like to be able to see and edit
my profile, in order to see what personal information is connected to my

profile and edit in case something is incorrect or not up to date

e App Profile: As a waste-picker, I want to have the ability to delete my

account

Since the first couple of sprints focus on stabilising and enhancing already ex-
isting features of the app, the group’s resources are mainly used for implemen-

tation rather than research. Following the Nexus Framework, progress and any

3.1. Sprint 1 19

potential dependencies were discussed in daily Scrum meetings, providing better

transparency internally and with other teams if necessary.

App Login: As a non-logged-in user, I want to have the ability to pre-
view the app, so that I can understand the application before register/lo-
gin

The PBI is in the mobile section of the product backlog and is concerned with
creating a state in which a non-logged-in user is able to read about the app before

registering or logging in. The acceptance criteria for this PBI are as follows:

* Brief explanation about the application in 3 steps

¢ User needs to have the ability to enter OR register

Firstly, the user is shown a loading screen seen in figure

9.44 T .

. ~EDUCADO

Transformando conhecimento em
liberdade

Figure 3.1: Loading Screen

3.1. Sprint 1 20

While the screen is loading, the app checks if the user has opened the app before.
If they have opened the app before, the user is shown the login screen where they
can also register. Otherwise, the preview section is displayed before the login
screen as shown in figure The previous section can either be navigated by

swiping or pressing on the arrows next to the text.

9.44 = = 9.44 = = 9.44 = -

{»EDUCADO

SEJA BEM-VINDO!

Aqui, tornamos o aprendizado

acessivel e divertido para todos.

Explore nossos conteudos e
comece sua jornada de
desenvolvimento.

Cadastrer

(a) Preview 1

«.EDUCADO

FACA DOWNLOAD E
ACESSE OFFLINE

Este é o seu espago para
aprender de forma interativa e
< envolvente. Faga o download >
dos contetidos e acesse offline
quando quiser!

Cadastrer

(b) Preview 2

Figure 3.2: Preview Screens

<

¢ EDUCADO

CADASTRE-SE E
EXPLORE

Faca parte de nossa
comunidade e descubra um
mundo de aprendizado ao seu
alcance, ndo importa sua
formacgao académica.

Cadastrer

(c) Preview 3

App Home: As a waste picker, I want to view when I don’t have an

active course (empty state)

This PBI is purely concerned with frontend since the objective here is to create a
view that informs the learner, that they have no active courses. The screen can be
seen in the mobile app and was developed following the style guide and design

layouts from the Figma files provided by the product owner. The acceptance

3.1. Sprint 1 21

criteria for this PBI are as follows:

* Notify the user that it is necessary to subscribe to a course to begin study-
ing.

e Show the user how to subscribe to a course.

The text on the screen gives the user the necessary information (see figure [3.3),
thus fulfilling the acceptance criteria. Overall, the creation of this view is rela-
tively straightforward; however, certain challenges arise when translating some
of the CSS code to Nativewind CSS due to the use of plain CSS in the existing
code. There are also a couple of dependencies that must be solved during inte-
gration, namely the explore courses button redirecting to the correct page, which
at this point is non-existent, and correctly fetching the user’s active subscriptions
to check if there are any. The PBI was accepted by the product owner at the

following sprint meeting. The resulting view can be seen below:

EDUCADO

Comece agora

Vocé ainda n&o se increveu em nenhum
curso. Acesse a pagina Explore e use a
busca para encontrar cursos do seu
intresse.

Figure 3.3: No courses view (Empty state)

3.1. Sprint 1 22

App Profile: As a waste picker, I would like to be able to see and edit
my profile, in order to see what personal information is connected to

my profile and edit in case something is incorrect or not up to date

This PBI needs implementation in both the mobile and backend repositories, as
a result of the mobile application using APIs provided by the backend such as
"../api/user/update-email”. The PBI deals with editing the user’s information
like name, e-mail and profile picture. If the user wants to edit their profile, they
can click a button which will take them to the edit profile screen. There is no
design mock-up provided for this PBI, so the team decided to make a relatively
flexible draft and is expected to refine it based on the product owner’s feedback.

The acceptance criteria for this PBI are as follows:

¢ Name, e-mail, photo or default image

¢ Users have the ability to edit their personal information

In the first sprint, the edit profile screen looks like this:

3.1. Sprint 1 23

.- EDUCADO

6

Deletar conta

(a) Edit profile screen (b) Edit name

Figure 3.4: Edit profile modal

If the user presses the name or e-mail buttons on figure [3.4a a modal box pops
up. In this modal, the user can write a new name and save it as seen in figure
This triggers an API call to the backend which is responsible for updating
the database. If the API call returns with a code 200, the updated field is also

updated in the async storage.

While implementing the design of the edit profile screen, necessary unit tests
are made for this PBIL. This mostly concerns the backend, testing if the name and

e-mail are updated properly in the database.

1

2

10

11

12

13

14

15

16

3.1. Sprint 1 24

App Profile: As a waste-picker, I want to have the ability to delete my

account

This PBI is already implemented in the mobile application, but the API endpoint
it tries to reach is non-existent. This means that this PBI is easily implemented
because the backend just needs to make the endpoint available and delete the

user when activated. The code for the API looks like this:

Listing 3.1: Delete User Route

router.delete ("/delete/:id", requirelogin, async (req, res)
=> {
try {
const { id } = req.params;

const deletedUser = await User.findByIdAndDelete (id);

if ('deletedUser) {

return res.status (404).json({ error: "User not found"
IO
}
res.status (200) . json({ message: "User deleted

successfully" });
} catch (error) {
console.error ("Error deleting user:", error);
res.status (500) . json({ error: "An error occurred while
deleting the user" });
}
s

After the setup of the API endpoint has succeeded, some unit tests are made for

deleting a user from the MongoDB memory server via the API endpoint.

3.1. Sprint 1 25

3.1.2 Sprint Review

Due to a lack of coordination, there was no increment to be presented by the
integration team. Therefore, the individual groups discussed their progress with

the product owner instead.

Out of the aforementioned PBIs, the second one was accepted by the product
owner, which was the empty-state page (no courses). This means that it was
ready to be pushed from the team’s feature branch to the development branch.
At this time, the DoD does not include that a feature must be in the staging
branch before being considered done but is discussed and swiftly added follow-

ing the sprint review.

As for the delete-user and welcome-screen PBls, additional unit tests are re-

quested before being considered for acceptance.

The edit-profile PBI was considered incomplete because it requires further re-
finements in its design, the first and last name must have their respective fields,
and the change phone number field must be changed to e-mail. The new e-mail
field must have validation as well to ensure that the user does not enter an invalid
e-mail address, nor one that matches with their current one. Lastly, the feature

of uploading a profile picture is missing.

The CodeScene static code analysis tool is set up and the most problematic files
are immediately fixed using CodeScene’s own suggestions. Overall, code health
is vastly improved and is currently in the 8+ range out of 10. The team of this
paper implemented code health in its acceptance criteria for the individual PBIs,

as it wasn’t agreed upon to include it in DoD.

3.1. Sprint 1 26

3.1.3 Sprint Retrospective

During the retrospective, the integration team established that the teams need to
conduct better and more frequent stakeholder communication with the product
owner. The acceptance criteria can therefore become more refined, and aligned

with the expectations of the product owner.

Furthermore, a central element of Scrum is to consistently deliver value to the
product owner, which was not done in this sprint. Therefore the teams should
strive to push their increments into staging before the next sprint review, and
GitHub Actions and static code analysis must be implemented into the produc-

tion pipeline for improved delivery.

Improving the communication between teams (cross-functionality) is vital, both
considering dependencies and code merging. Therefore, communication should
be conducted through open channels, such as the team’s Discord channel or
GitHub issues to create better transparency. Before merging, additional code re-

views must be done by other teams to ensure a smoother process.

To improve team autonomy, dividing larger PBIs into smaller ones with match-
ing acceptance criteria can be a good option, and creating "dummy data" as a
temporary stand-in for database communication is advisable if needed. Working
with "dummy data" is used to work around dependencies, to not stop the imple-

mentation of some PBIs.

Looking at the overarching sprint goal quoted at the start of the section, this
increment resulted in considerable progress regarding enhancing or at least fix-
ing existing features but was kneecapped by the time required to understand the

system at hand.

3.2. Sprint 2 27

Integration team developments

Concluding the first sprint, the integration team established that automation
must be improved, and the definition of done must be revised to better reflect the
expected quality of the product, as well as being more clearly defined. To achieve
this, GitHub actions are to be implemented for linting and type-checking, and all
tests must pass before a pull request can be considered for a review. As for
the integration team itself, meetings should be held with higher frequency and
everyone is reminded that dependencies and issues are to be documented on

GitHub rather than on communication channels.

3.2 Sprint 2

The overarching sprint goal is the following: ”Stabilise and enhance the Educado
platform by enabling web course creation and mobile app access. Focus on design, us-
ability, and performance improvements while ensuring future feature integration and
user-friendliness.” The key difference between this and the previous sprint goal
is that this sprint focuses on further development and improvements to be done
to the old system, rather than fixing what is already there. Nevertheless, the
remaining PBIs related to fixing the old system which have yet to be accepted,
must be completed, adhere to the project’s DoD, and be pushed into staging.
Since only minor fixes are required for most of the leftover PBIs, they do not get

their own items in the paper’s sprint backlog.

3.2.1 Sprint Planning
Sprint backlog;:

e App Profile: As a waste picker, I would like to be able to see and edit

my profile, in order to see what personal information is connected to my

3.2. Sprint 2 28

profile and edit in case something is incorrect or not up to date (cont. from

Sprint 1)

e App Course [Frontend]: As a waste picker, I want to be able to answer

exercises

¢ App Course [Backend]: As a waste picker, I want to be able to answer

exercises

¢ App Course: As a waste picker, I want to be able to review the exercises

and get feedback from it

Originally, answering exercises and getting feedback was a single PBI, but was

chosen to be broken up into backend and frontend PBIs for better clarity.

Minor fixes to the first sprint’s PBIs

The delete account button is, based on product owner feedback, moved to profile
settings, see figure Furthermore, unit tests are made for the API handler
to make sure that the URL works properly. Unit tests are also written for the

welcome page, and all translation errors are corrected.

App Profile: As a waste picker, I would like to be able to see and edit
my profile, in order to see what personal information is connected to my
profile and edit in case something is incorrect or not up to date (cont.

from Sprint 1)

The revised acceptance criteria for this PBI are as follows:

¢ Have a default profile picture

¢ Users have the ability to edit their personal information (first name, last

name, email)

3.2. Sprint 2 29

Edit name(s) and email in database (backend)

Validate name(s) and email

Have relevant error messages in Portuguese

Do not create new issues in CodeScene (static code analysis tool)

Based on feedback from the first sprint review, the looks and logic of the profile
settings are updated. Additionally, the possibility of uploading a profile image
is separated into a new PBI due to its size and was subsequently passed onto the
video streaming scrum team due to the technical relevancy of file buckets. It was
formulated as the following user story: "[App Profile]: As a waste picker, I want
to upload a new profile picture or choose the default profile picture in my profile

settings."

The functionality of the Ul stays the same, but styling is made more uniform

with the rest of the application. See the updated version here:

3.2. Sprint 2 30

1050 O & © 04

< .~ EDUCADO

Figure 3.5: Revised profile settings screen

The logic of the email model is updated with semantics for validating the email,
and a confirmation field is added, which is used to ensure that the user enters
the correct email. The semantics of the email are integrated in coordination with

the other team working on the login screen to ensure a unified semantic check.

The singular name field is changed to separate first and last name fields. The
modal checks if the new first or last name matches with the current first or last
name, and gives the proper warning before updating. Generally, all warnings

and text fields are translated into Portuguese.

Lastly, the field 'name’ in the database is separated into first name and last name,
because of the update of the edit profile screen. This means that new unit tests
must be made for updating the first and last names in the database. In the first
sprint unit tests were made to update the MongoDB memory server, but the API

endpoints were not tested. Therefore in this sprint unit tests are made to test the

3.2. Sprint 2 31

API endpoints, for updating email, first name and last name.

App Course [Frontend]: As a waste picker, I want to be able to answer

exercises

This covers the visual part of letting the user answer a given question within an

exercise. The acceptance criteria for this PBI are as follows:

* Question with 4 options (1 right and 3 wrong)
¢ User can only move to the next one when choosing one of the alternatives

¢ User should be able to go the review page after finishing the exercise

This screen is designed using the styling guides provided by the product owner.
There is already a file in the repository for this screen, which was leftover from
the previous developers. It is generally agreed upon, that if leftover code is
found, it should be analysed for usable code that could be reused instead of
deleted. In an effort to reuse the old code, it was quickly discovered that it did
not follow the current vision of the product, and was therefore largely discarded.
As minor exceptions, the "leavebutton" component and progress bar seen at the
top of the finished PBI are kept using the old code. Everything else presented
in this section is newly created during this sprint, such as the information bar at
the bottom of the screen, which is now a component to make it reusable on other

screens.

The screen works by fetching the relevant exercise from the database and dis-
plays the question within the exercise object. Afterwards, the array within the
exercise object which contains every possible answer is mapped through and

displayed. This solution is made to be dynamic for every exercise.

3.2. Sprint 2 32

1000 0 & v4n
< 25%
Qual é a pergunta que o content creator irs
fazer nessa etapa?
Option option option option option
option placeholder placeholder
placeholder
Option option option option option
option placeholder placeholder
placeholder
Option option option option option
option placeholder placeholder
placeholder
Option option option option option
option placeholder placeholder
placeholder
Course name: dummyCourseld
dummySectionid

Figure 3.6: Answering exercises

App Course [Backend]: As a waste picker, I want to be able to answer

exercises

This PBI covers the backend part of letting a user answer exercises and he accep-

tance criteria for this PBI are as follows:

* Get the exercise from the database
¢ Update the user’s progress after completing an exercise

¢ Have unit tests for get and patch routes

Firstly, the model for the user in the database has to be updated with a complet-
edCourses array. Inside each completedCourse is a new array with the courses’
sections, and inside each section is its completedExercises for the specific user.

The structure of the completedCourse field in the user model looks like this:

3.2. Sprint 2

33

1 completedCourses:

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

{

L

{

Schema.Types.ObjectId,

Courses'

completedSections: [

sectionId: {

type: Schema.Types.0ObjectId,

ref: 'Sections'

completedExercises: [

{
exerciseId: {
type:
ref:
3,
isComplete: {
type: Boolean,
default: true
}
}

isComplete:

courseld:
type:
ref: !
},
{
},
1,
¥
}

1,

{

type: Boolean,

default:

isComplete: {

type:

Boolean,

false

Schema.Types.0ObjectId,

'Exercises

33

34

35

36

3.2. Sprint 2 34

default: false

The users of the application are using mobile devices which for the most part
have less computing power than computers, which the content creators use. The
users, therefore, need fewer computations to get their completed courses, sections
and exercises, making the application more responsive. Based on the location of
the users, it is reasonable to assume that the internet connection is not reliable,
and therefore they have to use the application offline. When they are offline and
complete exercises, it is easier to simply update the logged-in user locally, and
then when the user gets an internet connection they can update their user in
the database. If a new collection is made for completed courses, sections and
exercises, the user would need to store more collections locally while offline,
thus using more memory on the device. Taking this into consideration, it makes
more sense to add the new fields inside the user model instead of creating a new

collection.

3.2.2 Sprint Review

During this sprint review, the integration team presented only the app-login PBI,
since it was the only one on staging-branch. Following that, each team presented

their progress individually.

The team of this paper had all PBIs from the first sprint accepted, which were

the welcome screen, delete-account, and edit profile.

As for the frontend part of answering exercises, some adjustments must still

be made to adhere to the current definition of done. The backend and feedback

3.2. Sprint 2 35

parts are missing most items but were presented to show progress to the product

owner.

Lastly, the overall code health determined in the static code analysis is neither

unchanged or improved.

3.2.3 Sprint Retrospective

During the sprint retrospective, it was assessed that the management support
is to be utilised more efficiently, so the integration team should hold a weekly
meeting with the repository manager, where all questions are addressed rather

than sending direct messages.

As for team autonomy, other than using "dummy data", one can also mock de-
pendencies rather than being reliant on another group’s work. Furthermore,
database models are to be updated, so every team can work in a uniform man-
ner. Daily stand-up meetings should also receive more attention if needed, to

ensure internal transparency and efficiency through frequent communication.

A major issue of this sprint was the lack of value delivered despite the progress
made by individual teams. Therefore, more time should be set aside to tackle
merging conflicts and related challenges. For cross-team functionality, merging
smaller increments instead of processing numerous PBls at a time is preferable,
so it should be the standard in future sprints. Furthermore, CodeScene static
code analysis is to be added to the production pipeline to ensure improved code

quality.

Lastly, it is strongly advised that everything that can be automated should be

automated.

3.2. Sprint 2 36

Integration team developments

It was concluded that more resources must be spent merging and reviewing
merged code, while tests, linting, type-checking, and static code analysis should
all be automatically done when opening a pull request. Furthermore, all teams
should beware of only pushing relevant changes when creating pull requests. A
good practice is to clone dev and merge one’s one branch into this temporary
branch before merging into dev, so only the new files are shown on the pull

request that is to be reviewed by other developers.

Chapter 4

Research on social-gamified learn-

ing experience

Now that the initial enhancement and stabilisation part of the project is finished,
the primary focus of the group can finally come into the spotlight. Unlike previ-
ous PBIs, where a clear plan and design were laid out for the design and devel-
opment processes, the upcoming sprint also requires a more thorough analysis
of the domain of social gamification and planning on the group’s part. Since the
product owner is not a domain expert in this specific field, numerous discussions

are also planned to map out the most beneficial features to be implemented.

4.1 Theory

4.1.1 What is social gamification?

Before delving into any specifics of social gamification, one must understand
what the term represents. There is no one clear-cut commonly agreed-upon def-
inition, as it is a relatively new, and continuously evolving field. The definition

for gamification that this paper works with is the following: “Gamified learning

37

4.1. Theory 38

approaches focus on augmenting or altering an existing learning process to create a re-
vised version of this process that users experience as game-like. Because gamification is
usually not used to replace instruction, but rather to improve it, effective instructional
content is a prerequisite for successful gamification.” [18]]. Given this definition, the
"social" adjective means that it is to be interpreted in, or scaled to function in a

social setting.

4.1.2 Why is social gamification a good thing?

To create something of real value, one must also understand the relevancy of so-
cial gamification and its strong suits. In this paper [18], the authors discuss the
results of their research and unanimously conclude that social gamification is a
promising prospect; “Evoking social interactions via gamification in the form of com-
binations of collaboration and competition was most promising for behavioural learning
outcomes. This result for behavioural learning outcomes is in line with evidence from the
context of games, showing that combinations of competition and collaboration in games
are promising for learning.” [18]. The paper emphasises social interactions evoked
by collaboration or competition. These can be achieved in many ways, and open
up numerous possibilities. Even individual work can be socially gamified by pro-
viding competition in the form of leaderboards for instance. Nevertheless, these
two factors should be considered as the fundamental ideas or overarching goals

of all social gamification-related PBIs.

The paper further elaborates on the relevancy of social gamification; “The present
meta-analysis supports the claim that gamification of learning works because we
found significant, positive effects of gamification on cognitive, motivational, and

behavioural learning outcomes.” [18].

Deciding between collaboration or competition does not seem important accord-

4.1. Theory 39

ing to the data: “For the cognitive and motivational learning outcomes, no significant

difference in effect sizes were found between the different types of social interaction.” [18].

4.1.3 4 Phases of the gamification journey

Although the relevancy and high-level idea of social gamification have been clar-
ified, more specific guiding principles to achieve these results are also help-
ful when crafting and discussing individual ideas. For this purpose, the book
Actionable Gamification: Beyond Points, Badges, and Leaderboards by Yu-kai

Chou, a gamification expert and pioneer, is used as the primary source [5].

The main point of social gamification is to provide motivation in exchange for
more engagement. Note, that more engagement can mean scaling the number of
users, as well as the longevity of user engagement. A social-gamified experience

consists of 4 experience phases; discovery, onboarding, scaffolding, and endgame

[5].

Discovery

The Discovery phase is about getting introduced to and gaining product aware-
ness. Here, the potential customer learns WHY they should become a user. A
first impression is crucial; see for instance the immaculate detail of the packaging
of a new iPhone or MacBook. The presentation should be brief, motivating, and

appealing to the specific target group of the product [5].

The welcome page crafted during the first sprint could certainly be considered
a part of the packaging of the product, which means that the group has already
contributed to improving this factor of gamification in a meaningful manner.
Packaging, of course, does not directly influence the competition or collaboration

aspects but is more of a core element in the user experience. Without a proper

4.1. Theory 40

introduction, the lifetime of a user could be over before it begins, thus largely

decreasing the value provided in terms of user longevity and engagement.

Onboarding

Identity is a fundamental element of onboarding. Identity covers the process of
creating an account and choosing a profile picture, username, etc. With this, the
user has a perceived ownership of their progress. Identity is worth considering
later on, implementing personalised messages, for instance, boosting a product’s
capability of highlighting individuality. Based on the Octalysis Framework [J] the
core drive, Ownership & Possession is very relevant here. It refers to the desire
to own and control things, and the satisfaction that comes from possessing or

being responsible for something [5].

Seeing personal development on one’s profile rather than just on a course page
could contribute to the mental image of tying one’s progress to a user. Further-
more, depicting win-states, e.g. completed courses, level, points, and badges on
one’s personal profile can contribute to the interpretation of progress as personal

progress rather than just progress on an app.

Other than gaining identity, onboarding in a social-gamified setting is about fig-
uring out what the “game” is and where the user stands in the “game”. Famil-

iarising the user with the options, mechanics, and “win-states” is crucial.

This could be done using a tutorial without proposed risk, such as in a prac-

tice run of a board game where the players play with open cards.

Using the Octalysis Framework, it is worth mentioning three drives in the on-
boarding phase. For the sake of clarity, a leaderboard example is used to exem-

plify these drives. A leaderboard presented to new users is something already

4.1. Theory 41

discussed, so it makes perfect sense to discuss the core drives in this specific con-

text.

Development & Accomplishment: It encompasses the drive to make progress,
achieve goals, and overcome challenges. Displaying a leaderboard can tap into
the user’s desire for achievement and progress. By showcasing the accomplish-
ments of top performers, new users can be motivated to strive for recognition

and progress on the leaderboard themselves.

Social Influence & Relatedness: This drive involves the desire for social inter-
action, influence, and a sense of belonging within a community. A leaderboard
can foster a sense of community and social interaction among users. New users
may feel encouraged to engage with the platform or community, as they observe
the achievements and activities of other participants, thus creating a sense of re-

latedness and social influence.

Scarcity & Impatience: It relates to the motivation derived from the perception
of limited availability or the fear of missing out on something valuable. Intro-
ducing a leaderboard during the onboarding stage can create a sense of urgency
and drive among users, especially if the leaderboard highlights limited spots or
rewards for top performers. This can encourage new users to actively participate

and compete to secure their position on the leaderboard before it’s too late.

Scaffolding

Now that the user is familiar with the “rules” of the “game”, their objective is to
achieve as many “win-states” as possible. To not lose the user, they should be
motivated to come back on a regular or even daily basis, with daily rewards or

streaks for instance [5].

4.1. Theory 42

All 8 core drives of the Octalysis Framework are crucial in this phase to achieve
success. Other than the drives described above, it is worth elaborating on the
development and accomplishment drive, which encompasses the drive to make
progress, achieve goals, and overcome challenges. Progression should have a

point, otherwise “win-states” become meaning]less.

"Win states" in the context of the current state of Educado encompass correct
answers, completed sections, completed courses, and levelling up. These could,
in concept, be extended with badges, a leaderboard, statistics such as answer ac-

curacy, and another team’s focus, certificates.

The leaderboard example from above is arguably a good way to retain several
of the core drives, as long as healthy competition is present. In some clicker
games, to achieve an illusion of competition, some bots are also present on the
leaderboard, posing as real competitors, their scores reacting to the user’s own
score. This could, however, be classified as black-hat gamification, since it is
arguably deceiving the user. In a real-life setting, many such practices are ap-
plied to create a feel of community and competition despite the potential lack of

userbase.

Endgame

The endgame represents the phase where the user has done everything there is
to do and is starting to feel like there are no longer any unexplored "win-states".

A possible solution is regular updates enriching the content of the product [5].

If Educado’s idea of an ever-evolving creator community comes to fruition, the
issue is virtually solved. Still, providing new challenges and ways of succeeding
to the user is a common practice worth considering to keep so-called long-time

"veteran users" hooked.

4.1. Theory 43

Continuing with the leaderboard example, if a leaderboard is reset frequently,
or is changed to be based on a different statistic, there are suddenly new “win-
states”, furthermore, this plays on several other core drives, as it implements
a sense of unpredictability and scarcity into the system. Appreciating “veteran

users” is also an important aspect of the endgame.

4.14 Framework for social gamification

Yu-Kai Chou’s book [5] also provides a walkthrough of universally applicable
guidelines to enable and enhance the social gamification aspect of a product, and

common pairs of game mechanics and dynamics.

Guidelines [5]:

1. Allow Repeated Experimentation: Learning activities, like games, should

allow repeated experimentation to reach a goal.

2. Include Rapid Feedback Cycles: Immediate feedback helps students im-
prove their strategy and increases the chances of success in the next at-

tempt.

3. Adapt Tasks to Skill Levels: Good games help players realistically believe
in their chances of success. Different levels of goals adapted to students’

skills improve motivation.

4. Increase Tasks’ Difficulty as Students’ Skills Improve: Adapting tasks to
the skill level of each student improves their expectations of completing the

task successfully.

5. Break Complex Tasks into Shorter and Simple Sub-Tasks: Allowing stu-
dents to complete small sub-tasks within a larger task helps them deal with

complexity in a divide-and-conquer approach.

4.2. State of the art

44

6. Allow Different Routes to Success: Each student should be able to choose

a different sequence of sub-tasks, following their own route to complete

the task.

7. Allow Recognition and Reward by Teachers, Parents, and Other Stu-

dents: Being rewarded and appraised promotes students” social status.

Most common game mechanics and dynamics [5]:

Game elements

Game mechanics

Game dynamics

Points

Levels

Trophies, badges, achievements
Virtual goods

Leaderboards

Virtual gifts

Reward

Status
Achievement
Self expression
Competition

Altruism

Figure 4.1: Game Mechanisms and Dynamics [5]

This information should be kept in mind and used in discussions when brain-

storming and developing features related to gamification.

4.2 State of the art

Following the exploration of the theoretics of social gamification, it is worth tak-

ing a closer look at a couple of real-life examples of how it is implemented. In the

following section, research regarding current uses of gamification that encourage

learning is documented and presented. This is done to confirm the validity of the

previously established knowledge regarding gamification, and also to document

4.2. State of the art 45

where the inspiration came from which inspired some of the elements seen in

the Educado app.

4.2.1 Duolingo

Duolingo is a popular and widely used education platform and is number 2 on
Apple’s App Store under the education category as of writing this paper [1]. It
got popular by taking a gamified approach to teaching its users different lan-
guages, and they have since then expanded to other categories such as math and

music theory.

The app makes it very clear to the user that it uses gamification to ease their

learning journey by making it more fun.

4.2. State of the art 46

2354 = 2354 =

App Store < App Store

&~

...s0 Duolingo is designed to be
It can be hard to stay motivated... fun like a game!

CONTINUE

Figure 4.2: The screen shown to new users of Duolingo

The introduction to Duolingo explains to the user what they can expect from
the application, while also encouraging the user to participate. Subsequently,
the user is asked to choose their personal goals, which is done by selecting a
language and a milestone of how much they want to learn within a given time
frame. This is important to mention as it is a key step in the phases of the
gamification journey, which is the onboarding phase. The user is introduced to
all the core mechanics in a playful manner, and the introduction does not overstay

its welcome.

4.2. State of the art

23.51 =

all T (8%
< App Store

g

Get ready to join the 900,000 people
currently learning Arabic with
Duolingo!

Figure 4.3: Encouraging messages that give the user a sense of community

47

In the onboarding phase, the user is allowed to create their own avatar. This

otherwise meaningless feature allows the user to get a sense of individuality,

which makes the learning experience more personal. The avatar becomes the face

of the user’s progress, as it also shows their statistics underneath their avatar on

their profile page.

4.2. State of the art 48

< App Store

®

Achievements

Anders
Anders914553 Photogenic

Joined November 2023

CLAIM REWARD

0 Following 0 Followers

2+ ADD FRIENDS
Sharpshooter

You completed 1 lesson with
no mistakes

Statistics
.]

®?2
Legendary

Complete 1 legendary level

. View 11
Achievements few 11 more

& © B & 0 @ & - H & 9 @

Figure 4.4: The profile page in Duolingo

On the profile page, some of the previously mentioned game elements are seen.
It is a summary of the user’s journey in the app and shows things such as points
and achievements. These are key elements in game design, but in the case of
gamification, they help the user track their progress and motivate them to un-
lock achievements and levels by working towards their goals which they made
during the discovery phase. Furthermore, these elements affect multiple core

drives, as they present numerous win-states for the user.

In terms of social gamification, Duolingo also uses a leaderboard. This works
by enabling users to compete against each other in leagues, which are weekly
leaderboards. This ties into the development & accomplishment phase, as it en-
courages the user to engage with the application more as their progress has a

possibility of being showcased among other top performers. In a blog post made

4.2. State of the art 49

by Duolingo, it is mentioned that the leaderboards were introduced because they

found that “a little competition worked for a *lot* of learners!” [26]].

@\

Diamond Tournament
Top 20 reach the Semifinals
3 days

Z A% peter 4860 XP

°
08 deniseeisenlohr

ﬂ :@ freddy
Y 365+
; Anna
Gy
£%8 Akilah
60
.@ + manuel
@ Nina
® 365+

-~

Figure 4.5: Leaderboard in Duolingo

In addition to leaderboards, Friends Quests is another feature that uses social
gamification to ease the barrier of entry by allowing the user to learn with their
friends [9]. Every week users are paired up with a random friend of theirs on
Duolingo, and then they are assigned a random challenge. These challenges
can be everything from gaining a certain number of points to completing a cer-
tain number of lessons. “Everyone needs something different to motivate them, but
we’ve seen that Duolingo’s social features, like adding friends and congratulating them
on learning milestones, can actually boost your learning!” [9]. Duolingo tries to ex-
pand the sources of encouragement to the user by enabling users to hold each

other accountable to a shared goal and stay committed to learning.

4.2. State of the art 50

QUESTS

Complete 30 quests

Friends Quest ® 2 DAYS

Complete 20 perfect lessons

Figure 4.6: Friend Quests in Duolingo

Duolingo’s gamification strategies serve as a validation of the effectiveness of in-
corporating game elements into educational platforms. The success of Duolingo,
reflected in its high ranking on Apple’s App Store and widespread user engage-

ment, underscores the potential impact of gamification on learning outcomes.

4.2.2 Brilliant

[H] Brilliant is another online learning platform that focuses on interactive and
problem-solving-based education, which also incorporates elements of gamifica-
tion to ease the learning experience by making it fun [2]. The two applications
are compared here as they are very similar in what they are trying to achieve,

and the methods they use to do so.

Brilliant lets itself inspire a lot from Duolingo. Everything from when points

are given to the user during an exercise, to the way their courses are navigated

4.2. State of the art 51

through like stages from a video game.

09.51 w =@

< search

CS & PROGRAMMING « LEVEL 2

2.1 Programming with Python ©®

© 22Lessons s Practice

Xz

Welcome

e to Python
~.

Practice Welcome

to Python

Numbers
in Python

&

Practice Numbers
in Python

Figure 4.7: An example of how courses are navigated through in Brilliant

One feature that is used in both apps, but is not as fleshed out in Brilliant is
the leaderboard system. It works the same in both apps, but since the friends sys-
tem is absent in Brilliant, the leaderboard is not as effective. Part of Duolingo’s
research concluded that learning together and motivating each other by display-
ing progress to each other, can make the user engage with the application more
[9]. The user might not feel inclined to engage with these social features, if there

are no other users to display these statistics and achievements to.

Brilliant and Duolingo share common ground in their pursuit of interactive and
gamified learning experiences. Brilliant draws inspiration from Duolingo’s suc-
cessful gamification elements, incorporating features like streaks and course nav-
igation akin to video game stages. However, the absence of a robust friends

system in Brilliant somewhat diminishes the effectiveness of its leaderboard, a

4.2. State of the art 52

feature that Duolingo leverages to enhance user engagement through social in-
teraction and friendly competition. The gamification of learning appears to be
a promising approach, but the effectiveness may vary based on the execution of

social features and the depth of the gamified elements within each platform.

4.2.3 Sub-conclusion

Having taken a look at the inner workings of social gamification and concrete
examples, the team is now better prepared for a valuable discussion with the
product owner. Based on core drives and maximising engagement longevity, the
items the team presents at the upcoming meeting are the following; highlighting
win-states on the profile page, providing a better onboarding experience using
an introductory course before real ones can be accessed, achievements or badges
for providing new win-states, already existing win-states e.g. correct answers,
section completion, course completion receiving unique congratulatory messages
and/or statistics, points and levels, streaks, and a leaderboard based on the afore-
mentioned point system. Although not all of these features are expected to be
developed due to time constraints, those that do could take inspiration from
already existing solutions - the team should provide value with good velocity

rather than reinventing the wheel.

Chapter 5
Sprints 3-6: Gamification

The primary focus of the sprints described in this section is to enhance the
user experience by improving the social-gamification aspect of the Educado app.
Other than describing the development process of the product backlog items,
they are also related to the research and theoretical background of social gamifi-

cation.

5.1 Sprint3

The overarching sprint goal is the following: “Enhance the user experience on the
web and app, including optimising course editing on the web and improving the social-
gamified learning experience on the app. Prepare for stakeholder validation and ensure
deployment readiness.” Other than finishing up every previous PBI, improving the
social-gamified learning experience was a deciding factor in selecting the forth-

coming PBIs for this sprint.

Starting the gamification process with points provides a solid groundwork for
numerous other features that appeal to the core drives of gamification. Despite

being a simple concept it unlocks the potential for levels, leaderboards, rewards,

53

5.1. Sprint 3 54

and several other items that can create competition amongst users, and have a

positive effect on progress ownership, empowerment and epic meaning.

5.1.1 Sprint Planning
Sprint backlog:

¢ App Course: As a waste picker, I want to be able to review the exercises

and get feedback from it (cont. from sprint 2)

App Course [Backend]: As a waste picker, I want to be able to answer

exercises (cont. from Sprint 2)

App Course: As a waste picker, I want to see me getting points after com-

pleting lectures/exercises on a course

App Course [Backend]: Implement points in Database

Minor fixes to the first sprint’s PBIs

The frontend of the exercise screen is finalised and pushed into the development
branch following the sprint review. It is first merged and pushed together with
the corresponding backend code during this sprint to ensure correctness. Smaller
issues in the development branch, such as incorrect redirection, and the use of
icons instead of SVG types for arrows are also fixed. Additional unit tests are

also added, due to being requested during code review.

App Course: As a waste picker, I want to be able to review the exercises

and get feedback from it (cont. from sprint 2)

This PBI is an enhancement of the previously passed-on prototype from sprint

the team is further developing the existing exercise answers view (see figure

5.1. Sprint 3 55

B.6). Providing an instant feedback loop also provides value towards gamifica-

tion. The acceptance criteria for this PBI are as follows:

* The app should provide feedback on the user’s performance after complet-

ing an exercise

* The feedback should be clear and concise, highlighting areas of strength

and weakness

¢ All options should have justifications for being correct or wrong that must

be presented to the user

By using conditional statements, the team applies conditional styling, thus chang-
ing the view according to the review of the answer. When the "Confirmar
resposta”-button is clicked, the answer is evaluated to true or false, which is then
used to determine whether the colour of the scroll-view should be green (the
answer is correct) or red (the answer is incorrect). When the button is clicked
the feedback text for each option is also shown and is also colour-coded. The

resulting view from this PBI can be seen below

5.1. Sprint 3 56

1244 Q ¢ @ o4 1116 Q ¢ @ o4l
< 50% < 50%
Fontes de renda sdo tudo que botam Fontes de renda sao tudo que botam
dinheiro pra dentro do orcamento. Podem dinheiro pra dentro do orgcamento. Podem
ser auxilios do governo, rendas informais, ser auxilios do governo, rendas informais,
trabalhos formais. Assinale a opgdo que trabalhos formais. Assinale a opgao que
NAO E uma fonte de renda NAO E uma fonte de renda

Salario

Auxilio

Auxilio
Venda de sucata

Venda de sucata
Cartao de Crédito

Planejamento Financeiro Planejamento Financeiro

(a) Correct answer (b) Incorrect answer

Figure 5.1: Answer feedback

In addition to the changes made to the frontend, some changes were also made
to how the data was fetched and displayed to the user. In the previous iteration
of the PBI, the data displayed was not fetched from a database but rather from
dummy data, which is a set of information or data created for testing, develop-
ment, or demonstration purposes. It is not real or actual data but is designed to
mimic the format and structure of real data. In this iteration of the PBI however,
the data displayed is actually fetched from a database. This is done by finding an
exercise in the database using a given ID, and then displaying the relevant data
in the view. In addition, the course title and section title, which the given exercise
is a part of, are also displayed in the bottom component of the view. This is also
gathered from the database. This is done with the following HTTP requests to
an APIL:

o

10

11

12

13

14

5.1. Sprint 3 57

Listing 5.1: apijs

export const getCourseByid = async (courseId) => {
const res = await axios.get(url + "/api/courses/" +
courseld);

return res.data;

}s
export const getSectionByid = async (sectionId) => {
const res = await axios.get(url + "/api/sections/" +
sectionId) ;
return res.data;
};
export const getExerciseByid = async (exerciseId) => {
const res = await axios.get(url + "/api/exercises/" +
exerciseld);
return res.data;
};

These are asynchronous functions that send HTTP GET requests to retrieve in-

formation about specific exercises, courses, and sections by their ID.

App Course [Backend]: As a waste picker, I want to be able to answer

exercises (cont. from Sprint 2)

The acceptance criteria in this sprint are the same as in sprint 2 In this
sprint, the user model is implemented correctly from sprint 2, and the function-
ality has to be made. As a start, an API endpoint is made for adding an exercise
to the user’s completedCourses field. The logic for doing so can be found in this

code:

Listing 5.2: markExerciseAsCompleted method.

5.1. Sprint 3

1 async function markExerciseAsCompleted(user,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

sectionld, exerciseId) {

const completedCourseIndex =

58

courseld,

user.completedCourses.findIndex (completedCourse =>

completedCourse.courseld.equals (courseId));

if (completedCourseIndex === -1) {

await UserModel.findByIdAndUpdate (

user._id,

{

$ push: {

)
} else {

completedCourses: {

courseld,

completedSections: [{ sectionId,

completedExercises:

3,

isComplete: false

const completedSectionIndex =

user.completedCourses [completedCourseIndex].completedSections.

findIndex (completedSection =>

[{ exerciseId }]

completedSection.sectionId.equals (sectionId));

if (completedSectionIndex === -1) {

await UserModel.findByIdAndUpdate (

user._id,

{

$ push: {

[completedCourses.$

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.1.

Sprint 3

)
} else {

{completedCourseIndex}.completedSections ~]:

{

sectionId,

completedExercises: [{ exerciseIld

3,

isComplete: false

const isExerciseAlreadyCompleted =

user .completedCourses [completedCourseIndex].

completedSections.some(completedSection =>

59

completedSection.sectionId.equals(sectionId) &&

completedSection.completedExercises.some (completedExercise

=>

completedExercise.exerciseld.equals (exerciseld))

if (isExerciseAlreadyCompleted) {

throw errorCodes['E0801'];

await UserModel.findByIdAndUpdate (

user._id,

{

$ addToSet: {

[completedCourses.$

{completedCourseIndex}.completedSections.$

[section].completedExercises "]:

exerciseId }

{

49

50

51

52

53

54

55

56

57

5.1. Sprint 3 60

}
3,
{
arrayFilters: [{ 'section.sectionId':
sectionId 1}]
}

}

The first if-statement checks if the course is found in the database. If it is not,
it will be added with an array called completedSections with an array called
completedExercises inside. The two arrays will have the section- and exerciseld
inside them as seen on line 11. This can be seen from lines 4 to 16. In the else
part on lines 18 to 32, it checks if the section is in the found course’s array. If not,
it will be added to the given course’s array seen by the variable called complet-
edCourselndex, which is the index of the course found in the completedCourse
field of the user from line 2. Again, an array for the section’s exercises is added
together with the sectionld. Lastly, on lines 44 to 54, if the course and section
already are in the user’s completedCourse array, then it simply adds the exerci-
seld to the section array. Right before it gets added, it is checked if the exercise
is already completed (in the exercise array). If so, the error code E0801 will be

thrown as seen on line 40.

This function is used in the function called markAsCompleted(). When the
markExerciseAsCompleted() function has finished running, the course and sec-
tion for the given exercise get checked if all their children’s sections and exercises
have been completed. If they are all completed, the course’s and or section’s field

isComplete is set to true. The function markAsCompleted() is finally used in the

5.1. Sprint 3 61

route on endpoint "api/users/:id/compeleted” where the id is the id of the user.

The route looks like this:

Listing 5.3: Route for api/users/:id/completed.

1 // Mark courses, sections, and ezxercises as completed for a

user

2 router.patch('/:id/completed', requirelLogin, async (req, res)
=> {

3 try {

4 const { id } = req.params;

5 const { exerciselId } = req.body;

6

7 let user = await UserModel.findById(id);

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

if (luser) {

throw errorCodes['E0004'];

const updatedUser = await markAsCompleted (user,

exerciseld);

res.status (200) . send (updatedUser) ;
catch (error) {

if (error === errorCodes['E0004'] || error ===

errorCodes ['E0008'] || error === errorCodes['E0012']) {

res.status (404) ;
} else {

res.status (400) ;

res.send ({

error: error

IO

26

27

5.1. Sprint 3 62

}
s

In the code above, the ID for the user and exercise is retrieved from the request’s
parameters and body. Then it tries to find the user by ID in the database, and if it
is not found, it will return the error code E0004. On line 13 it calls markAsCom-
pleted() with the given user and exercise ID. If no errors are caught it will return
the updatedUser returned by the markAsCompleted together with status code
200 [19]. In the catch block, it checks for error codes E0004, EO008 and E0012. If
any of these error codes are present in the error object, the status code 404 will

be returned meaning that either user, section or exercise was not found.

App Course: As a waste picker, I want to see me getting points after

completing lectures/exercises on a course

This PBI is an important one for the sprint goal, considering improving the social-
gamified learning experience on the app is a main focus point. Receiving points
in exchange for completing exercises gives the user an incentive to work on their
skills. It is also the first win-state the user is presented with. The acceptance

criteria for this PBI are as follows:
* Visual sign that the user got points (e.g. when answering an exercise)
¢ Some form of animation
* Documented point system

Following an initial meeting with the product owner, it was determined that the
right course of action is splitting it up into two parts; defining the logic for points,

and creating an exercise screen animation.

As for now, the points for the exercises are defined as 2 multiplied by the dif-

ficulty of the section or lecture. The product owner informed the group about

5.1. Sprint 3 63

a future meeting considering the points, so it was put on the sidelines for the

duration of the sprint, working with this simplified logic.

Since there are no mock-ups for the animation, the group decided to create
drafts in Figma and consult with the product owner. The presented drafts are
mainly inspired by Duolingo. This was a fruitful activity, since other than hav-
ing a bottom-screen popup accepted, the other full-screen mock-up was taken
into consideration for a future PBI, a popup for a completed section. During
this meeting, it was also determined that the product owner wanted to extend
the popup animation with the point amount floating up the screen towards the
progress meter. This is quickly implemented but is not considered release-ready;,

but rather a functional mock-up to be reviewed before the next sprint.

Qual ¢ a pergunta que o content
creator ir4 fazer nessa etapa?

Option option option option option
option placeholder placeholder
placeholder

Option option option option option
option placeholder placeholder
placeholder

Option option option option option
option placeholder placeholder
placeholder

(b) Early draft for the lecture

(a) Exercise Popup popup

Figure 5.2: Exercise and Lecture popups

The bottom-screen popup either takes a random phrase of affirmation (in case of

1

5.1. Sprint 3 64

a correct answer) or support (in case of an incorrect answer) from a pre-defined
collection. To enhance personalisation and progress ownership, an important as-
pect of social gamification, the user’s first name is added to some of the phrases,
such as "Good Job, Carlos!". Also, emojis are used for a more fun experience.
This popup is, as previously mentioned, loosely based on Duolingo’s popups.
The popup eases in from the bottom of the screen and eases out with a smooth

animation.

The collection of phrases used for affirmation or encouragement is stored in a
file named popUpPhrases located inside the constants folder. This is because
the file encapsulates two functions that return an array of "hard-coded" strings,
namely generateSuccessPhrases() and generateEncouragementPhrases(). These
functions take a name in the form of a string as an input, which, as previously
described, is inserted into a phrase for improved personalisation. These functions

are used inside the PopUp component.

The PopUp component takes two arguments; a boolean isCorrectAnswer, which
is used to determine what type of animation is to be shown, and an integer
xpAmount, used to display the amount of points shown in the animation. The
component consists of five functions: fetchUserName, getRandomPhrase, start-
PopUpAnimation, startXpAnimation, and customEasing. The code snippet be-
low |5.4| fetches the user’s first name, sets a random phrase using that name, and
then triggers animations on the page. Since fetching the username is an asyn-
chronous operation, it is crucial to use the "then" method to ensure that the code
inside it is executed only when the promise returned by fetchUserFirstName() is
resolved, i.e., when the first name is successfully retrieved. The customEasing

function is used inside the startXpAnimation to achieve smoother movement.

Listing 5.4: The sequence of execution inside the PopUp component

useEffect (() => {

10

11

12

13

5.1. Sprint 3 65

fetchUserFirstName () .then((firstName) => {
setRandomPhrase (getRandomPhrase (firstName)) ;
3}
Y, 01,

startPopUpAnimation () ;

startXpAnimation () ;

Generating a random phrase uses the aforementioned collection of strings, taking
firstName as an input. Depending on the correctness of the answer, the appro-
priate imported function is called, and a random index of the array of phrases
is selected. For usability reasons, there is a character limit on the length of the
phrases, but it is only a fail-safe in case the semantic check during registering or
updating the username is not functioning correctly. Although such hard-coded
variables do not adhere to the definition of done, it is still accepted, since it means

minimal technical debt.

Listing 5.5: Generating random phrases for the popup

const getRandomPhrase = (firstName) => {
let randomIndex = O0;
const phrases = isCorrectAnswer

? generateSuccessPhrases(firstName)

generateEncouragementPhrases (firstName) ;

randomIndex = Math.floor (Math.random() * phrases.length);
let randomPhrase = phrases[randomIndex];
if (randomPhrase.length > 69) {

randomPhrase = randomPhrase.substring(0, 69) + "...";

return randomPhrase;

5.1. Sprint 3 66

}s

The animations themselves use the Animated library from React Native, and are
fairly simple easing animations with customised timers, text content, and opacity

curves.

App Course [Backend]: Implement points in Database

This PBI is extracted from the previous one (I want to see me getting points...), to
distinguish between front and backend aspects of the same feature. The accep-

tance criteria for this PBI are as follows:

¢ Each user has a point field
¢ Each exercise gives x amount of points when answered correctly
¢ Each lecture gives x amount of points

¢ Each section gives x amount of points done

To implement points in the database, the user model in the backend must first be

updated. This is done by adding these two fields:

Listing 5.6: Fields added to the user model to implement points.

points: {
type: Number,
default: O

3,

level: {
type: Number,
default: 1

}

Now the user has a field called "points” and ‘level’. The field ‘level” is added after
a quick discussion with the product owner, and has very simple logic to level up.

The function for updating the user’s points and level is shown below

1

2

3

4

8

5.1. Sprint 3 67

Listing 5.7: Function for updating the user’s points and level.

function updateUserLevel (student) {
const pointsToNextLevel = student.level * 100;
if (student.points >= pointsToNextLevel) {

student.level ++;

return student;

3

The function updateUserLevel is used to add the given points to the user and

check if the user is supposed to level up.

5.1.2 Sprint Review

During this sprint, the team successfully finished and integrated the exercise sys-
tem, and the popup animation was approved by the product owner but is still
yet to be fully integrated, due to the user info not being correctly saved upon
logging into the application. With that, the gamification of the user experience
has arguably been improved, although the point system, as mentioned before,
needs revision before a full implementation can be done. This issue is expected
to be fixed fairly shortly, as soon as other teams have also merged their code into

the development branch.

The CodeScene code analysis is now considered a part of the DoD. Therefore, im-
proved code health is expected during the next sprints, since everything pushed
should have a satisfactory score. As of now, the code health has slightly increased

due to the new PBIs pushed, that are all unproblematic.

5.2. Sprint 4 68

5.1.3 Sprint Retrospective

The team itself has been good at focusing on the overall sprint goal and pro-
viding value to the product owner despite unresolved dependencies. Overall,
the expectations for the work to be done, considering the team itself, have been
realistic, but considering future PBIs also require research and analysis of other

competitors” solutions, the workload could require some adjustments.

Considering the bigger picture, to increase productivity, accepting some techni-
cal debt in exchange for improved delivery speeds seems to be the way forward.
This is supported by the idea that frontend testing will be discarded in the future.
Furthermore, GitHub actions can be extended to include CodeScene static code

analysis to ensure low complexity on future pushes without manual checks.

Integration team developments

The integration team strongly suggests relying on more metric data to evaluate
improvements and weak points in the team’s workflow. This metric data is gen-
erated by the Liberators questionnaire that is used during sprint retrospectives.
Additionally, keeping the sprint goal in mind is crucial, and delivering more fin-
ished PBIs in smaller and faster increments is preferred both considering the time

it requires to conduct code review and to deliver more value in shorter periods.

5.2 Sprint 4

The overarching sprint goal is the same as the last sprint: “Enhance the user experi-
ence on the web and app, including optimising course editing on the web and improving
the social-gamified learning experience on the app. Prepare for stakeholder validation and
ensure deployment readiness.” Hence the unchanged sprint goal, the main focus is

to finish enhancements to the already existing application and to continue the

5.2. Sprint 4 69

research and implementation of the team’s specific field, which is providing a
social-gamified learning experience. In this sprint, the point system is further
fleshed out, providing an improved user experience. Furthermore, a new win-

state is created, in the form of a section completion animation.

5.2.1 Sprint Planning
Sprint backlog:

¢ App Course: As a waste picker, I want to be able to view the scored points

on the whole course when I'm in a lecture or exercise.

¢ App Course: As a waste picker, I want exercises, lectures and sections to

give points based on intricate logic.

¢ App Course: As a waste picker, I want to see me getting points after com-

pleting sections (section animation).

Minor fixes to previous PBIs

A large part of this sprint is spent resolving issues and dependencies to get the
app into a deployment-ready state, so a user test can be conducted. This includes
the backend and frontend of answering exercises and popup animation for the
exercise screen. All of these PBIs are finalised, accepted, and deployed during
the start of the sprint. In conclusion, all PBIs preceding this sprint are considered

done.

App Course: As a waste picker, I want to be able to view the scored

points on the whole course when I'm in a lecture or exercise.

The acceptance criteria for this PBI are as follows:

5.2. Sprint 4 70

The app should have a feature that displays the scored points on the whole

course.

The feature should be accessible to waste pickers.

The feature should be available during lectures or exercises.

The displayed points should be accurate and up-to-date.

The feature should be user-friendly and easy to navigate.

The feature should not interfere with the overall functionality of the app.

Since there is no Figma or any mock-up presented for this feature, the initial step
is to come up with some design suggestions, from which the product owner can

choose. The different mock-ups created using Figma can be seen in figure

< 100

Qual é a pergunta que o content creator
ira fazer nessa etapa?

Figure 5.3: Designs for the PBI awaiting approval

Beyond the missing design, there is also a dependency on both the backend
and the application itself. The pop-up that is displayed when the user answers
a question correctly is being fixed during this sprint and is necessary to have

finished before working on this PBL

1

2

3

4

10

11

12

5.2. Sprint 4 71

App Course: As a waste picker, I want exercises, lectures and sections

to give points based on intricate logic.
The acceptance criteria for this PBI are as follows:
¢ The points system should be based on intricate logic.

* The app should accurately calculate and display the points earned by the

user.

After a discussion with the product owner, this PBI is changed to only give points
for exercises. Further details taken from the meeting with the product owner are
that the exercises upon answering correctly on the user’s first try should give 10
points. If the user answers incorrectly, but in another iteration of the section an-
swers correctly, the exercise gives 5 points, no matter the number of tries it takes.
The user model’s field ‘completedCourses’ is updated to include both the date of
completion for the specific exercise and the amount of points given to the user.
Also, the fields "isComplete” for ‘completedCourses” and ‘completedSections” are

removed. The field looks like this now:

Listing 5.8: The field ‘completedCourses’ in the user model.

completedCourses: [
{
courseld: {

type: Schema.Types.0ObjectId,

ref: 'Courses'
},
completedSections: [
{

sectionId: {
type: Schema.Types.0ObjectId,

ref: 'Sections'

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

5.2. Sprint 4 72

completedExercises: [
{
exerciseId: {
type: Schema.Types.0ObjectId,
ref: 'Exercises'
1,
isComplete: {
type: Boolean,
default: true
1,
completionDate: {
type: Date,
default: Date.now
1,

pointsGiven: Number

]

The logic for the amount of points given is based on whether or not the exercise
is present in the given user’s model when answering the exercise. There are three

different outcomes:
¢ If it is not, and the exercise is answered correctly, the user gets ten points.

¢ If the exercise is present and the exercise is answered correctly, the user

gets 5 points.

¢ If the exercise is answered incorrectly, the user gets 0 points, but the exer-
cise is added to the user’s data, to show that the user has answered it at

least once.

5.2. Sprint 4 73

Further point logic is discussed with the product owner, considering activity
streaks for extra points, but as of now, the currently implemented logic is consid-

ered sufficient for this PBI.

App Course: As a waste picker, I want to see me getting points after

completing sections (section animation).

The acceptance criteria for this PBI are as follows:

Visual sign that the user got points (e.g. when completing a section)

Some form of animation
* Documented point system (difficulty times 2 for now, revised later)
¢ Points are saved in DB (code is there, but not connected to the frontend)

There is no mock-up provided for this feature. Therefore, the first step is to
create one in Figma and have it accepted by the product owner. The accepted
rendition can be seen in figure IS.E. As previously noted, during sprint 3, the
royalty-free floating trophy with confetti GIF is kept as a part of the design. The
main focus, therefore, lies on displaying the gained points in a gamified, yet
easily understandable and systematic manner. The main inspiration for this PBI

is drawn from another educational mobile platform, Duolingo; see figure

5.2. Sprint 4 74

. ik

Super fast!

You completed this lesson in under 2 minutes

Extra Points

TOTAL XP GREAT
i
25 points

CONTINUE

(a) Completing a Section Educado (b) Completing a Section Dualingo

Figure 5.4: Section completion screens

In conclusion, the design is successfully being implemented in the mobile app.
The screen is not connected to the database. As a result, the points and extra
points earned in the section for the specific user are hard coded. The displayed
message is also hardcoded, but it should be a random message from a list of

congratulatory messages.

The screen comprises a royalty-free trophy animation, a randomly selected con-
gratulation message, and two boxes to display points earned in the section and

extra points obtained from various activities such as daily streaks, etc.

5.2.2 Validation test

During the fourth sprint, the product owner set up a meeting with the end users,
so that a validation test could be conducted. The six teams created some tasks

that the users should attempt to do. After the users failed or succeeded in com-

5.2. Sprint 4 75

pleting the individual tasks, they were asked questions regarding the design and
functionality. The validation test provided valuable gatherings regarding the de-
sign. For example did the users not understand the logout button, which there-
fore was changed to text instead of an icon. Some of the other test issues which
were called out were due to the application not working properly, for instance,
to get to an exercise they had to click on a video. This was of course not the
intended behaviour, so the developers were already aware of such issues. Fol-
lowing the validation test, it was the product owner’s responsibility to formulate

PBIs or refine already existing ones to better reflect user needs.

5.2.3 Sprint Review

A considerable part of this sprint has been spent on figuring out the funda-
mentals of social-gamification ideas of the app and preparing upcoming PBls
in collaboration with the product owner. Because of this, all of the new PBIs
remain unfinished. Due to the same reason, the team also scored lower on self-

management and team responsiveness in the questionnaire.

As of now, the section animation simply needs to be hooked up with other com-
ponents. The point system is clearly defined and implemented, only needing to
be merged into the staging branch. Viewing scored points during exercises and
lectures is currently in the design phase. This means that 2/3 PBIs are expected
to be finished very shortly. Despite the progress, the point of Agile is to continu-
ously deploy valuable increments, which has now consistently not been the case
partially due to a lengthy integration process, but also a lack of general under-

standing of Agile principles. This should be urgently addressed.

The presentation to the stakeholders is done using a single shared Google Slides

file this time, ensuring a uniform presentation and smoother flow.

5.2. Sprint 4 76

The mobile repository has a very solid average code health of 9.8, with the only
problematic performer being StorageService.js, still acquiring a solid score of 7.9.
This file is manually scanned and is determined to have appropriate complexity,

with all functions being very easily readable and self-explanatory.

educado-mobile-stage-copy N/ Filter by team WMoY
Hotspot Code Health ® Average Code Health ©® Worst Performer ©
> >) cm
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.5: CodeScene for Mobile repository in sprint 4

The backend repository has an average code health of 9.6, with the weakest per-
former, courseRoutesTest acquiring a score of 8.6. After a brief look at this file, it

is considered acceptable.

educado-backend-clone Y Filter by team WMoy
Hotspot Code Health © Average Code Health © Worst Performer (O
o °°
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.6: CodeScene for Backend repository in sprint 4

5.2.4 Sprint Retrospective

Based on the questionnaire results, it is determined that metrics should be more

actively used to evaluate the team’s work. Therefore, the results of the static

5.3. Sprint 5 77

code analysis done using CodeScene will be explored more in-depth at the end
of each sprint from now on. The health and quality of the mobile staging
branch and backend staging branch are discussed individually, and the progres-

sive changes/lack thereof are reflected.

Integration team developments

The integration team recognised the success of using GitHub issues and encour-
aged the continuation to achieve better visibility and tackle problems as soon
as they are spotted. A new problem that halted the progress of some PBIs was
the lack of communication regarding larger structural changes in the database.

Specifically, the courses” data models.

To further enhance automation, automatic deployment is the next step, and in-
tegrating CodeScene into the GitHub actions is aborted. Instead, the results of
the static code analysis are discussed in more depth. Although it would be bet-
ter to automate as many manual processes as possible to achieve better velocity,
the difficulty of implementation does not seem reasonable at the moment. The
main goal is to maximise value, and implementing CodeScene into the produc-
tion pipeline does not seem like a reasonable tradeoff considering the time lost
on other PBIs. It must be noted, that the team has used CodeScene from the start

of the project to check for any issues before opening pull requests.

5.3 Sprint 5

The sprint goal of this sprint is the following: "Deliver a stable production release
for both the app and web. Implement a comprehensive points and levels system in the
app. Releasable of the highest priority PBIs of offline access, video streaming, certificates,

and institutional onboarding features. Address design issues on the web platform.” The

5.3. Sprint 5 78

focal point of this sprint goal for the team is the comprehensive points and levels
system. This means that the prioritisation of the numerous new PBIs defined in
collaboration with the product owner must follow the notion of supporting this

goal.

Other than developing new features, a portion of this sprint is also spent further
researching gamification, so that the features and course of action are logical and
based on confirmed empirical evidence. Other than enhancing and stabilising
the points system and section completion, a new win-state is added, the course
completion animation. This screen is also planned to incorporate an excerpt from
a leaderboard, statistics on answer accuracy, and an indication of receiving a cer-
tification. In this way, several other win-states are also presented to the user,
visualising additional core drives such as social influence and relatedness, epic

meaning, and empowerment through feedback.

5.3.1 Sprint planning
Sprint backlog:

e App Course: As a waste picker, I want to be able to view the scored points

on the whole course when I'm in a lecture or exercise (cont. from sprint 4)

¢ App Course: As a waste picker, I want to see an animation with congratu-

lations messages after completing a section (cont. from sprint 4)

¢ App Course: As a waste picker, I want to see me getting points after com-

pleting sections (cont. from sprint 4)

¢ App Course: Completing course animation

5.3. Sprint 5 79

Minor fixes to previous PBIs

Based on user feedback from the validation test, the following PBI had to be fin-
ished up during the start of the sprint: App Course: As a waste picker, I want

exercises, lectures and sections to give points based on intricate logic.

All instances of "xp" are changed to "pts", and the getting points animation dur-
ing exercises is adjusted to ease up to the point counter. This is presented to the
product owner, who approves the changes, but an additional user validation test

is most likely needed to confirm the success of the fixes.

App Course: As a waste picker, I want to be able to view the scored
points on the whole course when I'm in a lecture or exercise (cont. from

sprint 4)

The acceptance criteria are unchanged from the previous sprint

There are a few dependencies that have to be resolved before this PBI can be
completed. One of the dependencies is a remake of the progress bar seen at the
top of the screen, which is a PBI for another group. Another dependency is fixing
the flow of the lectures and exercises in a section, which is currently a PBI that
was assigned to another group by the product owner. These dependencies have
arisen since the point tracker should be placed next to the progress bar, and the
functionality of the counting feature should work with the flow fix. The logic
of the feature does however work on its own and only needs to be integrated
with the other PBIs once they are ready and have been pushed to the develop-
ment branch. In the meantime, the usage of data in the exercise screen is going
to be reconsidered. Currently, the data used is fetched from the database and
causes unnecessary loading. This data should instead be passed from the previ-

ous screen which displays the lectures a user can pick from. This will increase the

5.3. Sprint 5 80

performance and responsiveness of the screen and will ensure the point tracker

is up to date.

App Course: As a waste picker, I want to see an animation with con-
gratulations messages after completing a section (cont. from sprint 4),
App Course: As a waste picker, I want to see me getting points after

completing sections (cont. from sprint 4)

These two PBIs are described in the same subsection, as their development was
largely intertwined and happened linearly with no notable challenges in imple-
mentation. The acceptance criteria are updated from the last sprint, and they are

as follows:
* Visual sign that the user got points (e.g. when completing a section)
* Some form of animation

* The animation should be triggered automatically after the user completes

a section.

* The animation should display a congratulatory message to the user for

completing the section.

Navigation to and from the screen has been added, so the animation is triggered
after a user completes a section. When navigating away from the screen, the
user goes back to the section overview and is ready to start the next section.
The points in the point box are fetched from the database, making it a dynamic
value. The points have an animation that counts from zero to the points earned
in the section. Lastly, congratulatory messages are shown randomly every time
a section is completed. The PBI is fully implemented in this sprint and fulfils
the DoD. Therefore, the PR for the PBI is accepted to be merged into the staging

branch.

5.3. Sprint 5 81

App Course: Completing course animation

The gamification of answering exercises starts with implementing popups for
single answers, continues with a congratulatory screen for completing sections,
and concludes with a summary at the end of a course. Unlike the first two, the
course completion should not only emphasise the "win-state" of getting points,
but also include other important driving factors, such as a leaderboard, statistics,
and, most importantly, the certification that the user receives by completing the
course. Following research on the theory behind social gamification, and several
meetings with the product owner, the acceptance criteria were formed, providing
a clearer picture of the expectations for this PBI. The acceptance criteria for this

PBI are as follows:
¢ Design approval (dependent on designer feedback)
¢ Screen provides statistics for the user’s performance on the entire course
¢ Clearly indicates user certification
¢ User redirected to course overview after certification
¢ Shows the user’s current position on the leaderboard
* Screen provides the user’s stats over correct first tries
¢ Screen is shown after completing the last section

The screen, which follows the completion of any course, consists of 3 slides; a
congratulatory slide, a slide containing a snippet of the leaderboard and statis-
tics (a circular bar displaying the percentage of correct answers as of now), and a

slide for the certification.

Firstly, each slide is designed in Figma and is presented to the product owner.

As of now, they are accepted, but further design changes may be requested by

5.3. Sprint 5 82

the assistant designer of the product owner.

Some important considerations before implementation were based on previous
PBIs and technologies used in them. The slider library previously used in the
welcome screen was lifted over, and high-quality royalty-free gifs are also in-
serted and styled using LottieFiles, in the same fashion as they are used in the
section completion screen. Inserting the user’s first name and a random choice
from a collection of phrases are also implemented following code snippets from

the exercise popups.

Getting the simplest elements out of the way, the overall layout is implemented,
and using previously implemented methods, the congratulatory slide and certi-
fication slide are created. The new features to be tackled are creating the leader-
board and circular progression bar. As of now, the leaderboard PBI is not in
progress yet, so placeholder text is used, which can later be swiftly replaced by
real data. All that is missing is backend code for fetching the relevant infor-
mation, and entering these into the correct text fields. The circular progression
bar is first attempted without libraries to avoid further dependencies but is later
changed for a library, whose codependencies are already in use, providing much
cleaner and less code than building it from the ground up. The final version in

this sprint can be seen in the screenshots below

1

2

5.3. Sprint 5

Bom trabalho, Ola! Vocé pode ver suas
estatisticas, placar educado e certificacio
antes de continuar.

(a) Congratulatory slide

>
Vocé respondeu 86% correta na

primeira tentativa, bravo!

Placar Educado

(b) Statistics Overview slide

Ver Certificado

Parabéns, vocé concluiu o curso Curso de
Teste e recebeu uma certificacdo. Vocé

pode ver todas as suas certificagées em

seu perfil

(c) Certification slide

Figure 5.7: Slides of the Course Completion screen

83

The following paragraph provides a more technical, in-depth walkthrough of the

implementation. Firstly, inside the CompleteCourse screen the course informa-

tion itself is fetched, and the frame for the slides, as well as the continue button,

are included. Other than resulting in more readable code, using the slider as its

own component also helps with reducing complexity and increasing modularity.

In the CompleteCourseSlider, the slide components are imported (Congratula-

tion, StatsOverview, and Certification), and are mapped to the indices of the

slider. The slider changes slide every 10 seconds, or the user can manually go to

the next slide by swiping or tapping the arrows next to the shown content. The

slider is implemented as such:

Listing 5.9: Use of the components in the Slider of the Course Completion Screen

const screens = [

<Congratulation />,

10

11

12

1

3

5.3. Sprint 5 84

<StatsOverview ref={statsOverviewRef}
courseObject={courseObject} />,
<Certification courseObject={courseObject} />,

1;

{screens.map((screen, index) => (
<View key={index}>
{screen}
</View>

)}

After importing the components, they are initialised as a part of an array called
"screens". Subsequently, they are mapped to the indices of the slider, by set-
ting the view key. When required, additional information is passed, namely the
course object, and stats overview reference. The course object contains relevant
data for the screen, since it has to display personalised information for each
course, and the stats overview reference is used to initiate an animation. Without

this, the animation would play before the correct slide is accessed.

The Congratulation and Certification components use the aforementioned Lot-
tieFiles library for inserting gifs into React Native code, and the following snippet
ensures the inclusion of the user’s first name, in order to increase the personali-
sation aspect of the product. A relevant snippet worth including for these screens
is the implementation of the user’s first name being included in the personalised

messages:

Listing 5.10: Fetching username to be displayed on the screen

const [name, setName] = useState('');

const getName = async () => {

10

1

2

5.3. Sprint 5 85

const userInfo = await getUserInfo();
setName (userInfo.firstName) ;

};

useEffect (() => {
getName () ;
., [

This code is a React functional component that uses the useState and useEffect
hooks to manage the state of a variable called name. To start out, the useState
hook is used to declare a state variable name with an initial state of an empty
string (”). The setName function is a setter function that allows you to update

the value of the name state.

The getName is a function declared using the arrow function syntax. It is marked
as asynchronous (async) because it contains an await expression. Inside get-
Name, there is an await getUserInfo(); statement. The getUserInfo function orig-
inates from the StorageService file, and as the syntax suggests, this function re-
turns a promise. The await keyword is used to wait for the promise to be re-

solved, and then the result is stored in the userInfo variable.

The useEffect hook is used to perform side effects in functional components.
In this case, it runs the getName function when the component mounts (speci-
tied by the empty dependency array []). This ensures that the getName function
is called once when the component is initially rendered. In the view itself, the

name is then inserted into the sentence in the following fashion:

Listing 5.11: Displaying the fetched username on the screen

<View>
<Text className="text-center text-base text-projectBlack

px-5 mt-12">

5.3. Sprint 5 86

3 Bom trabalho, \texttt{namel}! Voce pode ver suas
estatisticas, placar educado e certificacao antes
de continuar.

4 </Text>

5 </View>

Such as in the exercise popup, this is expected to be slightly changed, so the
name will be passed to the sentence generator. Nevertheless, the logic stays the

same.

The leaderboard part of the StatsOverview screen is hard-coded as of now, but is
expected to represent real data when the backend of the leaderboard system, and
user data models are updated. The circular progression bar uses a component
from the react native circular progress library with some changes to its styling
and animation. The following logic is implemented to find the percentage to be

displayed:

Listing 5.12: Logic behind the displayed percentage on the circular progression bar

1 async function getPercentage() {

2 try {

3 const completedCourse = await getCompletedCourse () ;

4 let totalExercises = 0;

5 let totalExercisesWithFirstTry = 2;

6

7 if (completedCourse) {

8 completedCourse.completedSections.forEach((completedSection)
=> {

9 completedSection.completedExercises.forEach((completedExercise)

=> {
10 totalExercises++;

11

12 if (completedExercise.firstTry === true) {

13

14

15

16

17

18

19

20

21

22

23

24

25

26

5.3. Sprint 5 87

totalExercisesWithFirstTry++;
}
B
IO
} else {

return O;

return Math.round ((totalExercisesWithFirstTry /
totalExercises) * 100);
} catch (error) {
console.error ('Error fetching completed courses:',
error) ;

return O;

This code snippet is of an async function getPercentage(): This defines an asyn-
chronous function named getPercentage. The "await getCompletedCourse()" line
calls the asynchronous function getCompletedCourse and waits for it to com-
plete. The result is stored in the completedCourse variable. The function then
initialises two variables, totalExercises and totalExercisesWithFirstTry, to count
the total number of exercises and the number of exercises completed on the first
try. The if-statement in line 7 then checks if completedCourse returns true (not
false, null or undefined). If it is true, it iterates through the completed sections
and exercises, updating the counters. If completedCourse returns false, null or
undefined, the function returns 0, indicating 0% completion. The function cal-
culates the percentage of exercises completed on the first try using the formula
(totalExercisesWithFirstTry / totalExercises) * 100. Finally, the result is rounded
using Math.round. If any errors occur during the execution of the function (e.g.,

an error in the asynchronous operation), it is caught in the catch block. An error

1

2

10

11

5.3. Sprint 5 88

message is logged to the console, and the function returns 0.

App Course [Backend]: As a waste picker, I want to see a leaderboard

ranking users by total points on a monthly basis
The acceptance criteria for this PBI are as follows:
¢ The leaderboard should display the total points of each user.
¢ The leaderboard should rank users based on their total points.
¢ The leaderboard should be reset on a monthly basis.
¢ The leaderboard should be accessible to all waste pickers using the app.

This PBI is made more general in the backend in the sense that a route for return-
ing a leaderboard for the top 100 users is made. The route takes a time interval as
input which can be either ‘day’, ‘'week’, ‘'month” or “all’. This way, a leaderboard
for the day, the week and overall can be returned from the same endpoint by
simply changing the input parameter. The functionality for the ranking of users

can be seen below:

Listing 5.13: Functionality for sorting by amount of points the user have in the database.

const leaderboard = await StudentModel.aggregate ([

{
$match: {
'completedCourses.completedSections.completedExercises
.completionDate ': dateFilter
}
3,
{
$unwind: '$completedCourses'’
3,

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

5.3. Sprint 5

89

$unwind: '$completedCourses.completedSections'

$unwind: '$completedCourses.completedSections.

completedExercises'

$lookup: A{
from: 'users',
localField: 'baseUser',
foreignField: '_id',

as: 'user'

}

$unwind: '$user’

$project: {
firstName: '$user.firstName',
lastName: '$user.lastName',
points: 1,
level: 1,

completedExercisesPoints:

'$completedCourses.completedSections.completedExercises.

pointsGiven'

}

$group: {
_id: '$_id‘',
firstName: { $first: '$firstName' I},

lastName: { $first: '$lastName' I},

44

45

46

47

48

49

50

51

52

53

54

55

56

57

5.3. Sprint 5 90

points: { $first: '$points' },
level: { $first: '$level' 1},
completedExercisesPoints: {$sum:

'$completedExercisesPoints ' }

}

3,

{
$sort: {
completedExercisesPoints: -1
}

},

{
$limit: 100

X

1D

Mongoose is used to filter the top 100 students which can be seen by the aggre-
gate() function. The first thing that happens is the ‘'match” keyword, which filters
the user’s completedExercises by the dateFilter variable. The dateFilter variable
is equal to the input parameter "time interval’ mentioned earlier. So if the time
interval is set to month, only the completedExercises with a completion date in
the current month are taken into consideration. After the filtering, the complet-
edCourses, completedSections and completedExercises arrays are deconstructed
with the "'unwind” keyword, so that each element in the array is outputted as its

own document.

After that, the student model’s base user is found in the database using the key-
word ‘lookup’ so that the leaderboard also returns the user’s first- and last name.
Then the found user is deconstructed with the ‘unwind” keyword to match the

other structures.

5.3. Sprint 5 91

Now all relevant data is found for each user, and the keyword "project’ is called
to specify which fields should be passed along the pipeline. The first- and last-
name fields in "project” are specified to be the user model’s fields and not the
student model’s. The number 1 specified for points and level implies that the
fields points and level should be included in the output of the aggregate() func-
tion. The field completedExercisesPoints is set to be equal to points given by each

completed exercise and is used to find the overall sum later.

The keyword "group’ is then called and it simply serves as a restructuring of
the student model, so that the output of the aggregate() function is always the
same. Here the completedExercisesPoints are set to be equal to the user’s com-

pletedExercises in the given time interval.

After all the users have been restructured, the keyword ’sort” is called, which
simply sorts the users by completedExercisesPoints. Lastly, the keyword 'limit’
is called to limit the amount of outputted users to 100. This is how the users are
ranked by total points, and the time interval can be set to ‘month’, which satisfies

the two acceptance criteria.

5.3.2 Sprint Review

Considering the team’s own efforts, it can be assessed that the team could have
been more focused on contributing more to a stable release, but design issues
were addressed, and the points system was refined. Overall, since there is only
one sprint left, the main focus is to get everything in place, and larger PBIs are

expected to be left on the sidelines.

Considering the larger picture, the notion of increment is not entirely there; some

teams still push lots of PBIs at the end of a sprint rather than working with small

5.3. Sprint 5 92

PBIs and pushing them individually. Although this has not been an issue for this

specific team, the sprint goal should have been kept in mind during development.

The code quality is overall unchanged. The mobile repository has an average
code health of 9.7, with the only problematic performer being StorageService.js,
still acquiring a solid score of 7.7. Although the overall score is slightly lower, it

is still completely acceptable, and the new components have a very solid score.

mobile-clone-codescene Y Filter WMoy
Hotspot Code Health ® Average Code Health ® Worst Performer (O
3 o7
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.8: CodeScene for Mobile repository in sprint 5

The backend repository has an average code health of 9.6, with the weakest per-
former, courseRoutesTest acquiring a score of 8.5. The health is virtually un-

changed and entirely acceptable.

backend-dev-codescene Y Filter WMoY
Hotspot Code Health © Average Code Health ® Worst Performer &
o3 o6
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.9: CodeScene for Backend repository in sprint 5

Even though this looks good on paper, sacrificing some code quality and gaining

5.3. Sprint 5 93

technical debt is almost unavoidable for leveraging more value to the customer.
Finding a fine balance is an improvement over having less code with higher
quality. Also considering this point, the tradeoff between less testing and more
deployment also seems like a good idea. For several sprints, this has been an
issue, and should therefore definitely be taken into consideration for the last

sprint.

5.3.3 Sprint Retrospective

Nearing the end of the project, the only aspects of the agile process that slightly
decreased were responsiveness and team motivation. Morale could have been a
major factor in the lacklustre performance considering the value delivered. The
loss in morale could be possibly further induced by the slow integration process
due to a lack of planning on the integration team’s part. Thus, getting PBIs into
staging was a painstakingly long and frustrating task with new undocumented
dependencies being introduced to the codebase numerous times, resulting in

further resources used on reworks of completed PBIs.

Integration team developments

The integration team emphasised the same points. As a last important upgrade
to the pipeline, an automatic end-to-end test using Detox will be attempted to be

implemented.

Furthermore, if time allows for it, there will be a test implemented that checks
if the app can be built. This is because there have been issues with staging not

being able to be built even though no tests failed or warnings were issued.

It is, however, worth highlighting again, that having all the crucial features in

place should have reserved priority over new quality-of-life updates.

5.4. Sprint 6 94

54 Sprint 6

The sprint goal for the sixth and final sprint is the following: “Complete the devel-
opment and ensure the integrated launch of the Educado platform to make it accessible
to all users. In the app, ensure a gamified experience and offline access. On the web,
implement institutional onboarding, enhance usability, and enable efficient certification
issuance for activities on Educado.” The most important aspect of this sprint is to
ensure a stable release. Furthermore, the team themselves can ensure a gami-
fied learning experience by pushing all of the most valuable PBIs that have been

worked on.

The main focus of this sprint is to ensure the delivery of all of the most important
PBIs from the previous sprint. These are, namely, fixing the flow of components,
showing points during lectures and exercises, and section & course animation
PBIs. All of these PBIs have received a lot of attention already, so they must be in
staging during the first week of the sprint. If possible, some of the new PBIs may
also receive attention during this first week of the sprint; namely extra points
logic and showing level on profile. Work on the leaderboard feature is halted
because it is not realistic to complete in the given time frame. To summarise,
the first week of the sprint should focus on development and deployment. It is
worth noting that the profile page is also receiving a large rework, making it a
more personalised screen with space for highlighting "win-states" rather than a

simple settings-page-like section where the user would otherwise not look.

The second week of the sprint should focus on fixing issues, tests, reducing
technical debt, cleanup, writing readme files, and documentation. In short, the
second week should ensure that everything is in its right place, documented and

running in a stable manner.

5.4. Sprint 6 95

5.4.1 Sprint planning

The sprint backlog items of this sprint are separated into previous and new items.
The previous items receive priority, and as the title describes, they are already in

progress.

Sprint backlog (previous items):
¢ App Components: Fix flow for components

¢ App Course: As a waste picker, I want to be able to view the scored points

on the whole course when I'm in a lecture or exercise

¢ App Course: As a waste picker, I want to see me getting points after com-

pleting sections (section animation)
¢ App Course: Completing course animation
Sprint backlog (new items):
¢ App Exercise: Extra points logic

e App Profile: As a waste picker, I want to view my current level on my

profile screen.

¢ App Course: As a waste picker, I want to see a leaderboard ranking users

by total points on a monthly basis

App Components: Fix flow for components

This PBI was originally from sprint 5 and is continued in sprint 6 for two reasons;
firstly, the lectures and exercises are not shown in the same order as the content
creator made them, because all lectures are always shown before all the exercises.

Secondly, the student can swipe on an exercise even though the student has not

5.4. Sprint 6 96

submitted their answer yet. Since the task has not been completed correctly, the

acceptance criteria have been updated to be as follows:
¢ Users should be able to easily navigate between different components.
¢ All exercises should be accessible and functional.
¢ The student should not be able to swipe on an exercise.
¢ The components should be in order as the content creator intended it.

The solution to this task is to refactor the database such the section model has a
field "components" instead of two fields "exercises" and "lectures". This way the
backend can extract the components in the right order and send it to the app. The
components are also refactored in the student model such that when a student
subscribes to a course, it gets the unfinished course saved in the database. This
way when the student swipes on a lecture or answers an exercise, the compo-
nent gets marked as completed and the progress on the course can be measured
correctly. This means that when a student leaves in the middle of a section, they
enter the last uncompleted component instead of the start of the section. If the
database model had been more thoroughly discussed, mapped out, and kept

up-to-date, this major issue would have not occurred.

App Course: As a waste picker, I want to be able to view the scored

points on the whole course when I'm in a lecture or exercise
The acceptance criteria for this PBI are as follows:

¢ The app should have a feature that displays the scored points on the whole

course.
¢ The feature should be accessible to waste pickers.

* The feature should be available during lectures or exercises.

5.4. Sprint 6 97

¢ The displayed points should be accurate and up-to-date.
¢ The feature should be user-friendly and easy to navigate.
¢ The feature should not interfere with the overall functionality of the app.

Showing points during lectures and exercises PBI is cleaned up, reviewed and

pushed shortly after the start of the sprint.

App Course: As a waste picker, I want to see me getting points after

completing sections (section animation)

The acceptance criteria for this PBI are as follows:

Visual sign that the user got points (e.g. when completing a section)

Some form of animation
¢ Documented point system (difficulty times 2 for now, revised later)
¢ Points are saved in DB (code is there, but not connected to frontend)

The feature is reviewed shortly after the start of the sprint and is merged into
the staging branch as it now fulfils the DoD. Following the dismissal of a full
implementation of extra points logic, the extra points counter is removed from
the screen. This simply means that a couple of lines are commented out but kept
for future developers. This minor patch is pushed into staging following a brief

review.

5.4. Sprint 6 98

Figure 5.10: Updated section animation

App Course: Completing course animation
The acceptance criteria for this PBI are as follows:
¢ Design approved

* Screen provides a course summary

Clearly indicates user certification

User redirected to course overview after certification
* Screen provides the user’s stats over correct first tries
* Screen is shown after completing the last section

The PBI was missing proper navigation and logic for when to navigate to the
screen. Now, the screen is navigated to when all sections in the current course

are completed. When the user has gone through all the slides on the course

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

5.4. Sprint 6 99

completion screen, they are navigated back to the overview of courses to start a

new course.

Listing 5.14: Handling all sections being completed on the section complete screen

async function handleAllSectionsCompleted () {

const studentInfo = await getStudentInfo();

if (isCourseCompleted(studentInfo,
parsedCourse.courselId)) {
navigation.reset ({
index: O,
routes: [
{ name:

'CompleteCourse' 1},

1
} else {
navigation.reset ({
index: 1,
routes: [
{ name: 'HomeStack' 1},
{
name :
'Section',
params: {
course:

parsedCourse

3,

IO

5.4. Sprint 6 100

In the code above, which is a function taken from the section completion screen,
it is seen that navigation is reset to the complete course screen when the utility
function isCourseCompleted returns true for the specific course that the user has

just finished.

Due to the leaderboard PBI being put back in the product backlog, the leader-
board element is removed from the statistics screen, but the code is left there and

commented out for future developers.

Voce respondeu 50% correta, bravo!

Figure 5.11: Updated course completion animation

App Exercise: Extra points logic

The extra points are rewards to the user when fulfilling different achievements
such as answering all exercises on the first attempt or a daily streak of completing
exercises or lectures. The extra points are only awarded when completing a

section. The acceptance criteria for this PBI are as follows:

¢ The extra points should be stored on the finished section.

5.4. Sprint 6

101

¢ When the user logs in and completes an exercise or lecture in multiple

days, extra points should be awarded.

¢ The extra points awarded should be added to the user’s total points.

® The current extra points should be stored on the user.

This PBI is not completed but the route in the backend is implemented. The route

looks like this:
Listing 5.15: Route for giving extra points.
1 router.put('/:id/extraPoints', requirelogin, async (req, res)
=> {
2 try {

10

11

12

13

14

15

16

18

const { id } = req.params;

const { extraPoints } = req.body;

if (!mongoose.Types.0ObjectId.isValid(id)) {
return res.status (400).json({ error:

errorCodes ['E0014'] });

if (isNaN(extraPoints)) {
return res.status (400).json({ error:

errorCodes ['E0804'] 1});

const student = await
StudentModel.findOneAndUpdate (
{ baseUser: id 1},
{
$inc: {
currentExtraPoints:

extraPoints

19

20

21

22

23

24

25

26

27

28

29

30

31

5.4. Sprint 6 102

if (!student) {
return res.status (404).json({ error:

errorCodes ['E0004'] });

res.status (200) . json(student) ;
} catch (error) {
res.status (500) . json({ error:

errorCodes ['E0003'] 1});

IO

The route takes the ID of the student as a parameter, and in the body of the
request, it takes a number value extraPoints. After extracting the values from
the request, it checks if the ID is of type Objectld from Mongoose’s library. The
next if statement ensures that extraPoints is a number and if not, it returns with
status code 400 and error code E0804. Then it increments the student’s field
currentExtraPoints with the value extraPoints extracted from the request. Right
before returning, it checks if the student is found in the database, if not it returns
with status code 404, and error code E0004. Finally, it returns with a status code
200 and the student as the response. The entire functionality is encapsulated
in a try-catch block, catching any unknown errors, and returns status code 500

(Internal Server Error) with error code E0003 [19].

App Profile: As a waste picker, I want to view my current level on my

profile screen.

The acceptance criteria for this PBI are as follows:

5.4. Sprint 6 103

The profile screen should display the waste picker’s current level

The level system should update dynamically as the user receives points

There should be a progress bar displaying the current progress to the next

level

The level system should have documented logic

In previous sprints, the custom progress bar always displayed the progress in a
text field next to the progress bar, followed by a percentage symbol. This was not
part of the Figma design, so it had to be changed. The custom progress bar has
been modified to include an additional parameter called displayLabel, which is
set to true by default. If it is set to false, the text next to the progress bar is not
rendered.

12 Q0 & 4l

@ Hans Giorgio

Editar perfil
Certificados

Download

[= sair

@

Figure 5.12: First iteration of the profile screen with points displayed

The data used to display the user’s current level and points are fetched from local

5.4. Sprint 6 104

storage, and saved to the device when the user logs into the app. The profile page
screen had to be adjusted from its current version to match the Figma design, and
this modification has been completed. However, during the PBI progress review,
the product owner expressed a desire to scale it back a bit, opting for a mix of

the previous version and the one provided in the Figma design.

Lastly, some logic has been implemented to calculate the total points the user

has gained throughout all their levels.

@ Hans Giorgio

Editar perfil

Certificados

Download

Figure 5.13: Updated profile screen with points and progress

5.4.2 Sprint Review

Considering the team of this paper, the sprint was considered a great success in
light of the overarching sprint goal. All of the finished PBIs greatly contributed
to improving the social-gamified learning experience on the app. Furthermore,
all of the already existing gamification features were optimised and enhanced

during the last week of the sprint, where the group focused on resolving issues.

5.4. Sprint 6 105

Preparation for stakeholder validation and ensuring deployment readiness was
also successful. The Nexus team presented a fully deployed and functional ap-
plication at the end of the sprint delivering a lot of value for the customers in
an incrementally integrated manner, thus better following agile principles. A full
CI/CD pipeline was also finalised, greatly increasing the level of automation in
the pipeline, and making future integration and deployment work much more
streamlined. Using the new pipeline, any merge into the main branch automati-

cally triggers a release to the Google Play store.

As expected, due to the less strict review and testing processes, the overall code
health has slightly decreased. For the mobile repository, StorageService is prob-
lematic, receiving a decreased rating of 5,2 and the overall code health is evalu-
ated to a slightly decreased 9.6, which is still good. Although this means that the
project has received some code debt, the increased velocity is arguably worth the

future cleanup work.

mobile-codescene Y Fiter WMoY
Hotspot Code Health ® Average Code Health © Worst Performer ®
>°) oz
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.14: CodeScene for Mobile repository in sprint 6

In the backend repository, ProfileRoutes is most problematic, receiving a rating

of 7,6 and overall code health is decreased to 9,4.

5.4. Sprint 6 106

backend-codescene N Fitter WMy
Hotspot Code Health ©® Average Code Health ® Worst Performer O
>) cm
Hotspots are the files with most development The weighted average health of all the files in The lowest code health score measured in the
activity. Even a minor amount of technical debt the codebase. This metric indicates how deep codebase. Points out long-term risks that you
in a hotspot will become expensive due to the any potential code health issues go. need to be aware of if the low performer is
high development activity. worked on.
View hotspots Explore codebase View worst performers

Figure 5.15: CodeScene for Backend repository in sprint 6

Despite the decreased code health, all repositories are left with improved docu-
mentation, guides, READMEs, and code that follows all standards. As formerly
mentioned, the last week of the sprint mainly consisted of a coordinated cleanup
of the project. This included removing all dead code, irrelevant comments and
console logs, deleting all feature branches, deleting all unused files, removing all
garbage from the database, updating database models, and documenting all fea-
ture progress. This is expected to improve the initial sprint of future developers,
considering that one of the great challenges of this project was the team famil-
iarising themselves with an insufficiently documented project with an outdated

database model and no readmes.

Following the review, a couple of hotfixes were still pushed into production to be
accepted into the Google Play store. In a real project, the end of the final sprint
would mean a code freeze, but in this case, the minor fixes were accepted due to

a couple of weeks still being left before the deadline.

5.4.3 Sprint Retrospective

In light of increased velocity, which was very much needed considering the last
couple of sprints, prioritising features ahead of perfect code was considered a

successful change to the workflow. Cross-team communication, on the other

5.4. Sprint 6 107

hand, should have received more attention in the context of the more hectic last-
minute merges. Furthermore, web and mobile teams should have conducted
more frequent and thorough communication providing more transparency, as the

PBIs of many teams presented more dependencies than previously observed.

Chapter 6

System Architecture

After restructuring the old codebase, the Educado project uses a microservice
structure. This structure is not used by the group of this paper, and therefore
it will not be discussed further. The theoretical system architecture used by this
group is a 3-tier layered structure. Which means it has a presentation layer, an
application layer, and a data layer. The presentation layer is the mobile repository,
the application layer is the backend repository, and the data layer is MongoDB
containing all the data for the project [17].

6.1 The Educado Platform Architecture

Collaborative writing begins
The Educado project attempts to follow the microservice architecture as seen in
tigure This means that the project consists of many small and independent

services, which is an ideal way of developing complex projects.

"Educado-mobile” contains the front end for the mobile application, to be used
by the waste pickers, while "Educado-frontend” contains the frontend for the web

application to be used by content creators. These two microservices share a back-

108

6.1. The Educado Platform Architecture 109

end, which is the 'Educado-backend’ microservice. This microservice contains
the Student APIs, Content Creator APIs, and more general APIs. The Student
and Content Creator APIs are specific to their platform (either mobile or web),
while the general APIs are services that both the app and web use, such as login.
Each platform has a way of storing information. The back end has access to the
cloud database, while the web browser for the front end, and the smartphone for
the mobile each have their local storage. This local storage allows the application
to save data on the respective device for either authentication purposes, offline

access, or fast data retrieval without communicating with the database.

Educado Video N

Streaming Service
~
GCP
Database Video Video/image
transcoding service —
A
| \ 4
/Educado Mobile App\ / Educado Backend \ / Educado Frontend \
4
Student API
Course Exercises & > Course Creator
subscription lecture - CRUD applications
A General API <
User/profile Certificates > Certificates User/profile
Content-creator API
A D
A A
% \ / \ /

T (A O
PDF
generation

Certificate
data

Y

A

LocalStorage

LocalStorage

PDF
download

Certificate
creation

Educado Certificate .
\ Issuance Service / Certificate database

Figure 6.1: Architectural diagram of the Educado platform, consisting of three main

repositories and two microservices.

6.2. CI/CD 110

Collaborative writing ends

6.2 CI/CD

CI/CD is the practice to combine continuous integration and continuous deliv-
ery, and falls under DevOps, which is "the joining of development and operations
teams" [16]. The goal of CI/CD is to eliminate the manual human actions usually
required to get new code to production by automating the processes. The process
includes running a build, tests, and the deploy phases. A CI/CD pipeline can
improve the efficiency of the organisation’s workflows by the automation and
testing of the code, thus maximising the development time. Another upside to
CI/CD is when an organisation grows bigger, the pipeline can decrease develop-

ment complexity [[16].

The continuous integration part of CI/CD is the integration of the code changes
into a main branch containing the source code. The idea is that the main branch
should run the automated tests with every change and starting a build. The ad-
vantages of CI is when merging changes and triggering the tests, the potential
bugs, breaking changes or code conflicts are highlighted earlier in the develop-

ment process [16].

Continuous delivery is the second part of CI/CD. It begins after the CI has been
completed, where the CD ensures the code is packaged to be able to deploy to

its environment. The deployments are automated like the CI is [16]].

Collaborative writing begins

6.2. CI/CD 111

6.2.1 CI/CD for this project

When it comes to the continuous integration and the continuous deployment of
the project, ‘GitHub Actions” were used for the educado-mobile and educado-
frontend repository, while the educado-backend is set up with Google Cloud.

Different GitHub Actions workflows were used for the different repositories.

The Educado mobile repository has four different workflows set up.

* Run Linting on Pull Requests and Branches: Automatically performs lint-
ing checks on pull requests into dev, ensuring correct code style and props

validation.

¢ Run Tests on Pull Requests and Branches: Runs the tests created on the

branch related to the pull requests into dev.

¢ CI: Runs when a pull request is made to the staging branch. It runs both
linting and automated tests. In addition, if all the tests pass, it builds an
APK file. By building the app on all pull requests into staging, one can
make sure that everything on staging is possible to build. In addition to
identifying problems early, one can also test the APK files on Android

devices before deployment.

¢ CI/CD: This pipeline is run on all pull requests into the main branch. It
runs both the linting and the automated tests. Then it builds the app, but
as an AAB file. When the build has succeeded, it automatically deploys

it into production on the Google Play Store. This pipeline can be seen in

Figure

6.2. CI/CD 112

Triggered via pull request yesterday Status Total duration Artifacts

sofiiagran opened #237 staging Success 27m 41s -

deploy.yml

on: pull_request

@ eslint 33s @ test 1m 19s @ build 23m 21s @ deploy 1m 59s

Figure 6.2: Model showing the CI/CD pipeline created for the mobile application on
GitHub actions.

The Educado backend repository has two workflows: 'Run Linting on Pull Re-
quest and Branches” and 'Run Tests’. They are used for running linting and
testing on all pull requests to dev, staging, and main. In addition, all pull re-
quests that are merged into staging are automatically uploaded to the Google

Cloud.

* Run Linting on Pull Request: Automatically performs linting on the Pull

Request branch

* Run tests: Automatically runs the tests written in the branch related to the

pull request on the development branch

Lastly, the Educado frontend repository had checks similar to the ones previously
mentioned: type checking and testing. The frontend, however, also has additional

checks for building and deploying the web app using Netlify.

¢ Type Checking: Automatically performs type checking to verify and en-

force any desired constraints on variables used in the code

* Run Tests: Automatically runs the tests written in the branch related to the

pull request on the development branch

¢ Deployment and Building: Automatically uploads and builds the website
using Netlify build.

6.3. Database Model 113

Collaborative writing ends

6.3 Database Model

Collaborative writing begins
The finalised data model for the project will be discussed in this section. The
visualisation of the data model is made as an ER diagram, although MongoDB
is a NoSQL document database and not a relational database. The database dia-
gram has been split into two clusters for simplicity. The first cluster contains the
Users, and the second contains Courses. The students connect the clusters using

the Courses and the Content Creators create the Courses.

The first cluster shown in figure [6.3a is the user cluster showing the relations
between the user model and its children. The first relation to the users is content
creators, which must be approved by sending an application. A model for insti-
tutions of the content creators was also created, however, this is omitted in the

diagram, as it does not have any references to other models at this stage.

The second relation of the users model is students, which is used to represent
mobile users. The student model has a relation to courses, which is all the courses
in which the student has either attended a lecture or answered an exercise. The
course field within the Student model is an array that holds Objectlds for each
course that the student has taken. The management of course enrollments and
student progress is handled within each course. Each index in the courses array
has a courses object that also contains an array called sections. The indices of the
sections array contain each section of the course. The sections contain a compo-
nents field, which is an array of components for the specific section. This can be
either exercises or lectures. When the student subscribes to a course, the course

is added to the courses field in the student model. A component can either be an

6.3. Database Model 114

exercise or a lecture. Lastly, the third child of the user model is the profile which
is used for web users. Another collection connected to the users is the password

reset token, which is the token used to reset the user’s password.

The second cluster in figure is an overview of the relations between the
Courses and their children. The course model has a list of Objectlds which is a
reference to all the sections in the course. The same principle is applied in the
section model, where the only difference is that components are a list of objects
with the Objectlds stored in compld, and its type is also stored in compType.
The compType property is used to determine if a component of the section is an

exercise or lecture.

Furthermore, we use a database for the certificate service, although this is very
simple and does not contain any direct relations (although it does have the IDs
for the user and course associated with the certificate). As such, a diagram for

this database has not been included.

6.3. Database Model 115

Content Creators Users Password Reset Token

baseUser: Objectld firstName: String Courses
has requests

lastName: String

userld: Objectld

rejected: Boolean H title: String

token: String

rejectionReason: String

approved: Boolean

Applications

email: String
password: String
joinedAt: Date
dateUpdated: Date

resetAttempt: List<Date>

expiresAt: Date

baseUser: Objectld
motivation: String
academicLevel: String
academicStatus: String
major: String

institution: String
educationStartDate: String
educationEndDate: String
company: String
position: String
workStartDate: String
workEndDate: String

workActivites: String

ha{

Students

Profile

baseUser: Objectld

points: Number

level: Number
currentExtraPoints: Number
subscriptions: Objectld

courses: <<Embedded>>

userld: Objectld
userPhoto: String
userBio: String
userLinkedInLink: String
userEmail: String

userName: String

enrolls

Courses<<Embedded>>

courseld: Objectld
totalPoints: Number

isComplete: Boolean
completionDate: Date

sections: <<Embedded>>

contains

Sections<<Embedded>>

Components<<Embedded>>

sectionld: Objectld
totalPoints: Number
extraPoints: Number
isComplete: Boolean
completionDate: Date

components: <<Embedded>>

contains

H—CO<] pointsGiven: Number

compld: Objectld

isComplete: Boolean

isFirstAttempt: Boolean

completionDate: Date

compType: Enum<String>

(a) The user cluster of the database diagram

description: String
dateCreated: Date
dateUpdated: Date
coverlmg: String
category: Enum<String>
creator: Objectld
difficulty: Number

status: Enum<String>
estimatedHours: Number
rating: Number

numOfSubscriptions: Number

contains

Sections

parentCourse: Objectld
title: String
description: String

components: List<Object<compld:
Obiectld, compType: Enum<Strina>>>

sectionNumber: Number
totalPoints: Number
dateCreated: Date

dateUpdated: Date

contains.

Exercises Lecture

parentSection: Objectld parentSection: Objectld

title: String title: String

question: String description: String

answers: Object<text: String, correct: Boolean,
feedback: String, dateUpdated: Date>

onWrongFeedback: Objectld

image: String
video: String

dateCreated: Date completed: Boolean

dateUpdated: Date

(b) The course cluster of the database

diagram

Figure 6.3: Two ER diagrams for users and courses respectively in the database. Note

that the implementation of relations may not be exactly as shown in the diagram since

we are using a NoSQL database.

Collaborative writing ends

Chapter 7

Quality Management

Quality Management is a crucial aspect in the development of software, en-
compassing strategies like unit testing, end-to-end testing, and version control.
Furthermore, non-technical practices such as user validation are also relevant to
value maximisation. This section explores the application of these methodologies
in the project, highlighting their roles in ensuring the software’s reliability and
effectiveness. The chapter discusses the challenges and adaptations in the testing
processes, both for frontend and backend components, and details the version

control approach adopted for efficient project management and collaboration.

7.1 Unit Testing

Unit testing is a core strategy in assuring high quality of a software product. It
is also an essential part of agile development and can lead to poor results if not
used properly [12]. This section will delve deeper into how unit testing was done

for this project.

116

7.1. Unit Testing 117

7.1.1 Mobile (Frontend) Unit Testing

The Jest testing framework was used for unit testing in the mobile repository
when receiving the project. The team’s objective was to stabilise and enhance
already existing features, so the framework scaled with newer tests and no other
options were explored. The development teams found out that the utilisation
of testing the frontend took too much time compared to the business value it
brought to the stakeholders. A choice was made to increase the technical debt to
prioritise increments and the fulfilment of the sprint goals. This was explained

further in depth in sprints 5 and 6 and

7.1.2 Backend Unit Testing

When it comes to unit testing for the backend repository, almost everything new
that is implemented must have a unit test dedicated to it. This is done to more
easily validate the correctness of the backend, and to make sure that everything
works as intended. The test cases that were present in the beginning of the
project are outdated because they could not test the routing functionality that the
backend provides. As a result of this, the entire test environment was changed,
and restructured. Now, the test environment is in a single folder, and uses a
library called Jest in combination with Supertest. Jest is used as the general
test library, while Supertest is used to test HTTP requests. A test case for route

"api/students/:userld /complete” can be seen below:

Listing 7.1: Test route for completing an exercise.

1 it ('route should return 200 with the updated student

(exercise) ', async () => {

3 const response = await

request ("http://localhost :${PORT} ")

10

11

12

13

14

15

17

18

19

20

21

22

7.1. Unit Testing

.patch('/api/s
'/complete '

.set ('token',

.send ({ comp:
isComplete:

.expect (200) ;

const student respon

expect (student.courses

expect (student.courses

expect (student.points)

expect (student.level).

const updatedStudent

118

tudents/' + userId +
)

token)

fakeExercise,

10 B

true, points:

se.body;

[0].totalPoints) .toBe (10);
[0].isComplete) .toBe(false);
.toBe (10);

toBe (1) ;

await

db.collection('students ') .findOne ({

baseUser: userId 1)
expect (updatedStudent .
expect (updatedStudent.
expect (updatedStudent.
expect (updatedStudent.

1

B

courses [0] .totalPoints) .toBe (10) ;
courses [0] . isComplete) . toBe(false);
points).toBe (10);

level) .toBe (1) ;

Some of the "expect" functions are removed to

make the code more readable.

The first thing to notice is the use of the "it" keyword, which is part of the Jest

library. The "it" keyword is used inside a "describe" block which is also taken

from the Jest library. "describe" is not shown in

this example but it serves as a

way to group related tests together. "it" is used to define each individual test

case [20]. Inside the test case a constant "response” is set to be equal to a re-

quest to a URL. The "request" function is imported in the beginning of the file

from Supertest. The request is sent to the URL of the testing environemt which

7.2. End-to-End Testing 119

is "http:/ /localhost:3000/api/students/:userld /complete”, with a token and a
body. The body contains two variables "isComplete" and "points" which are used
in the route to modify the data model for the user specified in the URL. Lastly,
the request expects a code 200 in the response, and if it receives anything else,

the test will fail.

After the request has been verified to respond with a code 200 (success), the
student which is also returned from the request is extracted from the body of the
response. From line 11-21 the student returned in the response is checked to see
if it matches the updatedStudent in the temporary database that is created for

the test environment.

7.2 End-to-End Testing

End-to-end testing is a pivotal component of quality management, ensuring the
robustness and reliability of software applications. This subsection explores the
challenges encountered in implementing end-to-end testing for the mobile ver-
sion of the Educado applications, addressing both technological intricacies and

unique constraints imposed by the development environment.

Building must be done before conducting end-to-end testing in the quality man-
agement process for mobile applications, particularly when utilising frameworks
like Detox in conjunction with Expo [10]. Detox is a powerful end-to-end testing
framework for React Native applications, while Expo offers a convenient set of
tools for developing React Native apps. However, the integration of Detox with

Expo introduces a set of challenges that require careful consideration.

One challenge is that Expo support with Detox is entirely community-driven

[11]. However, the primary challenge is that the Expo version used for the Edu-

7.3. User validation 120

cado mobile application is an older version and was never updated. This is a big
oversight which will be discussed in 8| As a result of this, end-to-end testing is

not implemented for the mobile application and is only done manually.

7.3 User validation

Including stakeholders, such as users, in sprint review is a common and very
useful practice. During the review meeting of the fourth sprint, the product
owner assisted in facilitating a user validation test with some waste pickers, who
were considered potential users of the app. A member from each team was also
present to receive the information firsthand and note any usability-related issues
while inspecting the users’ interaction with the product. Following the test, the
product owner collected the feedback and refined the product backlog based on

the newfound information.

7.4 Version Control

Version control is integral to quality management, offering developers a compre-
hensive history of code changes. This historical record is crucial for tracking and

managing modifications throughout a project’s lifecycle.
Collaborative writing starts

For the project, Git with Github was used to manage versioning. The entire

project consisted of five primary repositories:

¢ Educado-frontend: The web application used by content creators for creat-

ing and uploading content to the Educado Mobile App.

¢ Educado-backend: The primary back end, is used for handling most of the
traffic between the different parts of the system, like the mobile app, the

web application, and microservices.

7.4. Version Control 121

¢ Educado-mobile: The mobile app is responsible for serving the content to

mobile users.

¢ Educado-transcoding-service: The microservice is responsible for handling

the transcoding of video and all the traffic regarding GCP storage buckets.

¢ Educado-certificate-service: The microservice handles the creation, retrieval,

download, and deletion of certificates.
Each repository consisted of three key branches;

¢ dev: The Development branch used for pushing new features that have

been tested thoroughly and reviewed.

¢ staging: The Staging branch had changes pushed to it once or twice per
sprint. All of these features should be stable and work as intended. This
branch was used to present the product to the product owner in each sprint

review.
¢ main: The Main branch, which acted like a production branch.

During the development and implementation, there were several branches for
the different features. These branches would all have a prefix, depending on
the group to which they belonged. For instance, "video-" would imply that the
branch was used by the video streaming group. Then the name of the feature
being worked on would be added. An example of a branch name could be
"video-upload-to-bucket", which then further would imply that the feature im-
plemented in the branch had something to do with uploading data to the storage

bucket. This way, one could keep better track of the different branches.

When merging a branch into one of the collective branches (dev, staging, and
main) we would create a new branch specifically for merging. This branch used

the destination branch as base, and the merged feature branch as additions. This

7.4. Version Control 122

allowed the Nexus team to more easily solve merge conflicts, as well as allow fine-

grained control over which files you wanted to merge from the feature branch.

Collaborative writing ends

Chapter 8

Discussion

This chapter critically analyses the challenges faced in implementing Agile method-
ologies, managing software repositories, and handling databases in a software
development project. It focuses on the selection of an appropriate Agile scaling
framework and the impact of key aspects such as communication and trans-
parency on project efficiency. Additionally, the chapter assesses the initial state
of received repositories, the balance between code quality and delivery speed,

and the integration of gamification features within the project.

8.1 Issues with implementation of Agile

Shifting from a software development setting primarily resembling a waterfall
model was a major challenge. The velocity of providing value to the product
owner was often reduced because of this, and the small increments became larger
than they should have been, resulting in integration problems. Integrating large
chunks of code, namely several PBIs at once, requires more resources and cre-
ates bottlenecks in the delivery process. To summarise, a driving aspect of agile
development was misunderstood by some teams, which ended up in a waterfall-

type development process being forced into an agile setting.

123

8.1. Issues with implementation of Agile 124

Furthermore, selecting the scaled framework for the project was certainly not
a sufficiently structured exercise. At the time of deciding, the teams did not have
a sufficient understanding of any of the frameworks to make a qualified guess
as to which framework would make the most sense to go with. Arguably, the
Scrum of Scrums could have been an easier first step into the domain of Agile
Software Engineering. Scrum of Scrums is a more lightweight framework that
relies on the basic Scrum principles and practices. It is a natural extension of the
existing framework, making it easier for teams to understand and implement.
Scrum of Scrums typically involves representatives from each team participating
in coordination meetings addressing impediments in comparison to the Nexus
framework’s integration team and numerous events, which add an extra layer of

complexity [25].

Communication and transparency have also been critical bottlenecks for the pro-
ductivity of the Nexus team. Changes to the database models, dependencies, and
backend routes resulted in massive slowdowns in the merging process due to not
being communicated properly. These issues should have received more attention
from the integration team. A possible improvement could have been putting
more resources into sprint planning, clarifying dependencies and planning out a
logical way of coordinating tasks for the sprint as well as their integration. Pos-
sessing a more thorough understanding of others’ contributions and timelines,
and a more structured integration plan. The database models themselves should

have been kept up to date whenever changes were made.

Another aspect of the sprint planning which has not received enough attention
was the definition of acceptance criteria and user stories. These properties of a
PBI should have given a clear understanding of the product owner’s expectations

and should have been more thoroughly discussed rather than the team defining

8.2. Issues with the received repositories 125

them and the product owner simply accepting the definition of the PBI including

its user story and acceptance criteria as a whole.

The overall communication with the product owner, the domain expert repre-
senting crucial stakeholders, should have been more frequent and thorough. The
team of this paper recognised this mistake during the start of the sprint and also
communicated it via integration team meetings to share their knowledge, but the
issue of misaligned understanding between some teams and the product owner

persisted until the end of the project.

The team of this paper followed the advice of management on replacing the
Scrum master and integration team representative for each sprint. This way, ev-
ery team member got a taste of the work and responsibilities of the integration
team, thus a better understanding. Some other teams, on the other hand, decided
to have one representative throughout the entire project, which had some posi-
tive as well as negative effects. These people got a more thorough understanding
of the big picture of the project, thus making qualified decisions affecting the
whole Nexus Team and improving the effectiveness of communication with the
repository manager. However, these people became much more dominant in
common discussions and integration work, deciding on topics without hesitation
that should have been further discussed, for instance, the prioritisation of imple-

menting automation, end-to-end testing, and finalising the CI/CD pipeline.

8.2 Issues with the received repositories

It was discovered that the Nexus team was initially provided with a backend
from 17. October 2022, due to a lack of sufficient version control system in last
year’s project. This explains the initial over-simplicity of the backend and the

misalignment of the endpoints between mobile and backend repositories. The

8.3. Issues with code and database 126

work on the mobile repository was also largely affected by this oversight by the

repository manager.

8.3 Issues with code and database

As mentioned in several sprint reviews, a major bottleneck in the delivery pro-
cess was the unbalanced ratio of quality code and finished PBIs. The majority of
the sprints did not result in enough completed PBIs because of this, but it was a
valuable learning experience to understand the balancing of code debt and veloc-
ity of value delivery. The removal of frontend testing could have also happened
earlier on since it is much more important to test logical components rather than

rendering.

The database model was not updated regularly, which resulted in a lot of frustra-
tion from numerous groups. It was taken up at several integration team meetings
but was not highly prioritised. The database model should never have been up-
dated as regularly as the database itself did. To prevent this, the integration team
should have assigned a single team to create the models at the beginning of the
project, so they were well-defined before the individual Scrum teams started to

work with the models.

8.4 Evaluation of degree of Gamification

The features related to gamification that were implemented are onboarding-
screen, points, levels, exercise popups, section and course completion animations
including statistics, and a more scalable profile rework that facilitates further
gamification elements such as daily streaks or leaderboards. Although the im-
plementation of leaderboards could have given a lot of value, a stable release

was deemed a higher priority. Nevertheless, the implemented features were de-

8.5. Integration team issues 127

veloped following competitors” examples and with the central aspects of gam-
ification in mind, appealing to the user’s core drives. At its current state, the
Educado App follows numerous important guidelines such as rapid feed-
back cycles, breaking down large tasks into simple sub-tasks for the user, and
recognising progress with rewards. Common game mechanics and dynamics
could have been more widely implemented, providing rewards for collected
points other than level-ups, badges or achievements, or facilitating healthy com-
petition with leaderboards. As previously mentioned, the frontend part of the
leaderboard and streaks were implemented, which makes it easier for future de-

velopers to finish the pbi.

Collaborative writing begins

8.5 Integration team issues

As stated before, one of the ways the different teams used to communicate with
each other was through the integration team. Having an integration team helped
with transparency by gaining a better overview of the different group’s progress.
It also contributed to better cross-functionality between groups by being a chan-
nel for communication between groups and solving dependency issues. How-
ever, at times, the integration team was more focused on the general overview
and progress, than actual integration between teams. Especially, the web and
mobile teams lacked communication with each other. This caused some prob-
lems with teams working on some code that other teams were dependent on, or
by spending time structuring data that may cause problems for other teams. This
caused multiple setbacks throughout the project. If one were to utilize the full
potential of the integration team, one could avoid these problems caused by a

lack of communication between groups.

8.6. Product owner 128

A lot of the decisions made by the integration team were also communicated
to the rest of the teams by their representative instead of written announcements
to everyone. This caused a few problems with the decisions being communi-
cated differently depending on the representative and sometimes getting forgot-
ten without a written record accessible for everyone to easily see. In general,
having a better structure for how to document the agreements and decisions

discussed in the integration team would be beneficial.

8.6 Product owner

The PO is a domain expert, and their responsibility is to formulate user needs as
product backlog items, refine these items, and ensure that the value created goes
towards the overarching goal of the project. Their approval of any item is pivotal

to consider an item done.

Throughout the project, the PO often had to remind the Nexus team of the sprint
goals, which helped keep the bigger picture in mind. During sprint reviews, the
PO was clear and concise about the expectations set for the team, and although
they had their clear priorities, a lot of freedom was given to the developers in dis-
cussing the value, size, design, and clarification of acceptance criteria. This was
also needed, since, as a domain expert, the PO is not necessarily aware of the
technical difficulties of, e.g., implementing a Google Login or resetting a pass-

word via email.

The product backlog was always kept up to date, and PBIs were selected based
on how much they contributed to the actual sprint goal and how much value
they added to the product. The selection took place in correspondence with the
developers for a good mutual understanding. The acceptance criteria were de-

fined by the developers, and at times these were accepted by the PO without

8.6. Product owner 129

further discussion. Since there was no discussion, it could at times, lead to the

developers and the PO having different interpretations of the criteria.

In general, the PO was always open for meetings and easy to contact through
Discord. She had frequent checkups with the groups to keep updated on their
process, as well as realign expectations and priorities based on progress. At the
end of Sprint 4, the PO moved back to Brazil, which led to communication be-
ing less frequent. However, to compensate, she then started to participate more
in integration meetings, where she consulted with group representatives about

progress, expectations, and priorities.

In the first couple of sprints, there were a lot of dependency problems between
teams. Therefore, the PO took responsibility and started working on dependency
management during sprint planning. In addition, she often reminded teams to
deliver increments and thereby adhere to Scrum principles. Overall, the consen-
sus surrounding the work with the PO is that it was satisfactory and enhanced
our work and scrum process.

Collaborative writing ends

Chapter 9

Conclusion

The project comprised six sprints aimed at enhancing the Educado platform by
applying a scaled Agile software development framework, Nexus, focusing on
stability, usability, and, for this report, a gamified learning experience. Key ac-
complishments include implementing login features, refining profiles, enabling
course creation, and addressing exercise-related challenges. Improvements in
user experience, points systems, and backend logic were achieved, with a strong
emphasis on stakeholder communication and acceptance criteria. Challenges
were encountered in managing technical debt, unresolved dependencies, and
maintaining code health. Each sprint contributed to a more robust platform, cul-
minating in a successful final sprint with a deployed and functional application.
The retrospective highlighted increased velocity but emphasised the need for im-
proved cross-team communication. Despite slight decreases in code health, the
project delivered value, leaving behind improved documentation and code stan-

dards for future development.

130

Bibliography

[1]

2]
[3]

[4]

[5]

[6]

[7]

URL: https://apps . apple.com/us/charts/iphone/education-
apps/6017. (accessed: 09.11.2023).

URL: https://brilliant.org/. (accessed: 30.11.2023).

Open Al All things about ChatGPT. URL: https://help.openai.com/
en/collections/3742473-chatgpt. (accessed: 02.10.2023).

Luiza Cardoso Queiroz Melo. Educado project introduction. English.
Aalborg University in Copenhagen, Sept. 2023. URL: https://www.
moodle.aau.dk/pluginfile.php/3137156/mod_resource/content/
1/Software’%205%20-7%20Project%20Introduction207%281%29 . pdf
(visited on 06/12/2023).

Yu kai Chou. Gamification Design: 4 Phases of a Player’s Journey. URL:

https://yukaichou. com/gamification - examples/experience -

phases-game/. (accessed: 09.11.2023).

Yu kai Chou. The Octalysis Framework for Gamification & Behavioral
Design. URL: https ://yukaichou. com/gamification - examples/

octalysis-complete-gamification-framework/. (accessed: 09.11.2023).

Yu kai Chou. Yu-kai Chou LinkedIn Porfile. URL: https://www.linkedin.
com/in/yukaichou/. (accessed: 09.11.2023).

131

https://apps.apple.com/us/charts/iphone/education-apps/6017
https://apps.apple.com/us/charts/iphone/education-apps/6017
https://brilliant.org/
https://help.openai.com/en/collections/3742473-chatgpt
https://help.openai.com/en/collections/3742473-chatgpt
https://www.moodle.aau.dk/pluginfile.php/3137156/mod_resource/content/1/Software%205%20-%20Project%20Introduction%20%281%29.pdf
https://www.moodle.aau.dk/pluginfile.php/3137156/mod_resource/content/1/Software%205%20-%20Project%20Introduction%20%281%29.pdf
https://www.moodle.aau.dk/pluginfile.php/3137156/mod_resource/content/1/Software%205%20-%20Project%20Introduction%20%281%29.pdf
https://yukaichou.com/gamification-examples/experience-phases-game/
https://yukaichou.com/gamification-examples/experience-phases-game/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://www.linkedin.com/in/yukaichou/
https://www.linkedin.com/in/yukaichou/

Bibliography 132

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CodeScene. CodeScene for Developers. 2023. URL: https://codescene.
com/for-developers. (accessed: 29.09.2023).

Nico Sacheri Courtney Leung and John Trivelli. Introducing Friends
Quests, a fun way to team up and learn! URL: https://blog.duolingo.

com/friends-quests/. (accessed: 09.11.2023).

Detox. Detox. URL: https ://wix . github . io/Detox/. (accessed:
27.11.2023).

Detox. Expo. URL: https://wix.github.io/Detox/docs/19.x/
guide/expo/. (accessed: 27.11.2023).

Kim Dikert, Maria Paasivaara, and Casper Lassenius. “Challenges
and success factors for large-scale agile transformations: A system-
atic literature review”. In: Journal of Systems and Software 119 (Sept.
2016), pp. 87-108. 1ssN: 01641212. por: [10.1016/j . jss.2016.06.
013. URL: https : //linkinghub . elsevier . com/ retrieve / pii/
S0164121216300826 (visited on 12/07/2023).

Educado. The Educado Initiative. URL: https://github.com/Educado-
App. (accessed: 03.10.2023).

European Comission. What is Erasmus+? URL: https : //erasmus -

plus.ec.europa.eu/about-erasmus/what-is-erasmus (visited on

12/06/2023).

GitHub. Your Al pair programmer. URL: https://github.com/features/
copilot. (accessed: 02.10.2023).

Gitlab. What is CI/CD? 2020. URL: https : //about . gitlab . com/
topics/ci-cd/. (accessed: 11.12.2023).

https://codescene.com/for-developers
https://codescene.com/for-developers
https://blog.duolingo.com/friends-quests/
https://blog.duolingo.com/friends-quests/
https://wix.github.io/Detox/
https://wix.github.io/Detox/docs/19.x/guide/expo/
https://wix.github.io/Detox/docs/19.x/guide/expo/
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1016/j.jss.2016.06.013
https://linkinghub.elsevier.com/retrieve/pii/S0164121216300826
https://linkinghub.elsevier.com/retrieve/pii/S0164121216300826
https://github.com/Educado-App
https://github.com/Educado-App
https://erasmus-plus.ec.europa.eu/about-erasmus/what-is-erasmus
https://erasmus-plus.ec.europa.eu/about-erasmus/what-is-erasmus
https://github.com/features/copilot
https://github.com/features/copilot
https://about.gitlab.com/topics/ci-cd/
https://about.gitlab.com/topics/ci-cd/

Bibliography 133

[17] IBM. What is three-tier architecture? URL: https ://www . ibm . com/

topics/three-tier-architecture. (accessed: 11.12.2023).

[18] Lisa Homner Michael Sailer. The Gamification of Learning: a Meta-
analysis. URL: https://1link . springer . com/article/10. 1007/
$10648-019-09498-w. (accessed: 09.11.2023).

[19] Mozilla. HTTP response status codes. URL: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Status. (accessed: 14.12.2023).

[20] Meta Platforms. URL: https://jestjs.io/. (accessed: 07.12.2023).
[21] Meta Platforms. Jest]S. URL: https://jestjs.io/. (accessed: 03.10.2023).

[22] Productboard.com. Agile Definition of Done. 2019. URL: https://www.
productboard . com/glossary/agile-definition-of -done/#: 7 :
text=In%20agile’2C%20the%20definition’%200f , perform%420fory
20every%20backlog)20item.. (accessed: 28/09/2023).

[23] Scrum.org. Introduction to the Nexus Scaled Scrum Framework. 2019.
URL: https://www.youtube.com/watch?v=29M-rw6DWd8. (accessed:
27/09/2023).

[24] Scrum.org. Scaling Scrum with Nexus. 2023. URL: https : / / www .

scrum.org/resources/scaling-scrum. (accessed: 27/09/2023).

[25] Chris Spanner. Scrum of Scrums. URL: https://wuw.atlassian. com/

agile/scrum/scrum-of-scrums. (accessed: 14.12.2023).

[26] Duolingo Team. How do Duolingo Leaderboards work? URL: https://

blog.duolingo.com/duolingo-leagues-leaderboards/. (accessed:

09.11.2023).

[27] United Nations. The 17 goals. URL: https://sdgs.un. org/goals
(visited on 12/06/2023).

https://www.ibm.com/topics/three-tier-architecture
https://www.ibm.com/topics/three-tier-architecture
https://link.springer.com/article/10.1007/s10648-019-09498-w
https://link.springer.com/article/10.1007/s10648-019-09498-w
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://jestjs.io/
https://jestjs.io/
https://www.productboard.com/glossary/agile-definition-of-done/#:~:text=In%20agile%2C%20the%20definition%20of,perform%20for%20every%20backlog%20item.
https://www.productboard.com/glossary/agile-definition-of-done/#:~:text=In%20agile%2C%20the%20definition%20of,perform%20for%20every%20backlog%20item.
https://www.productboard.com/glossary/agile-definition-of-done/#:~:text=In%20agile%2C%20the%20definition%20of,perform%20for%20every%20backlog%20item.
https://www.productboard.com/glossary/agile-definition-of-done/#:~:text=In%20agile%2C%20the%20definition%20of,perform%20for%20every%20backlog%20item.
https://www.youtube.com/watch?v=29M-rw6DWd8
https://www.scrum.org/resources/scaling-scrum
https://www.scrum.org/resources/scaling-scrum
https://www.atlassian.com/agile/scrum/scrum-of-scrums
https://www.atlassian.com/agile/scrum/scrum-of-scrums
https://blog.duolingo.com/duolingo-leagues-leaderboards/
https://blog.duolingo.com/duolingo-leagues-leaderboards/
https://sdgs.un.org/goals

Appendices

The Octalysis Framework

The Octalysis Framework is a design framework created by Yu-kai Chou, a gam-
ification expert and pioneer [7]. It is used to analyse and design experiences that
effectively engage and motivate people. The framework is based on the idea that
human motivation is driven by eight core drives, which are categorised into two

main groups: the Left Brain and the Right Brain Core Drives [6].

The eight core drives identified in the Octalysis Framework are as follows:

1. Epic Meaning & Calling: This drive involves the desire to be part of some-
thing bigger than oneself and to work towards a meaningful goal or pur-

pose.

2. Development & Accomplishment: It encompasses the drive to make progress,

achieve goals, and overcome challenges.

3. Empowerment of Creativity & Feedback: This drive is about the satis-
faction derived from expressing creativity, experiencing positive feedback,

and feeling a sense of control over one’s environment.

4. Ownership & Possession: It refers to the desire to own and control things,
and the satisfaction that comes from possessing or being responsible for

something.

134

Bibliography 135

5. Social Influence & Relatedness: This drive involves the desire for social

interaction, influence, and a sense of belonging within a community.

6. Scarcity & Impatience: It relates to the motivation derived from the percep-

tion of limited availability or the fear of missing out on something valuable.

7. Unpredictability & Curiosity: This drive revolves around the excitement
and engagement that comes from unpredictability, curiosity, and the ex-

ploration of the unknown.

8. Loss & Avoidance: This drive is associated with the desire to avoid negative
outcomes or losses, and the motivation to protect oneself from potential

harm.

	English title page
	Preface
	Contents
	1 Introduction
	1.1 Educado
	1.2 The Nexus Framework
	1.2.1 Roles

	1.3 Definition of done
	1.4 AI-powered tools

	2 State of the Project
	2.1 Initial Database Diagram
	2.2 Adjustments before the first sprint
	2.2.1 Backend
	2.2.2 Frontend for mobile
	2.2.3 Preparing the development environment
	2.2.4 GitHub actions, templates, and static code analysis

	3 Sprints 1-2: Stabilisation and Enhancement
	3.1 Sprint 1
	3.1.1 Sprint Planning
	3.1.2 Sprint Review
	3.1.3 Sprint Retrospective

	3.2 Sprint 2
	3.2.1 Sprint Planning
	3.2.2 Sprint Review
	3.2.3 Sprint Retrospective

	4 Research on social-gamified learning experience
	4.1 Theory
	4.1.1 What is social gamification?
	4.1.2 Why is social gamification a good thing?
	4.1.3 4 Phases of the gamification journey
	4.1.4 Framework for social gamification

	4.2 State of the art
	4.2.1 Duolingo
	4.2.2 Brilliant
	4.2.3 Sub-conclusion

	5 Sprints 3-6: Gamification
	5.1 Sprint 3
	5.1.1 Sprint Planning
	5.1.2 Sprint Review
	5.1.3 Sprint Retrospective

	5.2 Sprint 4
	5.2.1 Sprint Planning
	5.2.2 Validation test
	5.2.3 Sprint Review
	5.2.4 Sprint Retrospective

	5.3 Sprint 5
	5.3.1 Sprint planning
	5.3.2 Sprint Review
	5.3.3 Sprint Retrospective

	5.4 Sprint 6
	5.4.1 Sprint planning
	5.4.2 Sprint Review
	5.4.3 Sprint Retrospective

	6 System Architecture
	6.1 The Educado Platform Architecture
	6.2 CI/CD
	6.2.1 CI/CD for this project

	6.3 Database Model

	7 Quality Management
	7.1 Unit Testing
	7.1.1 Mobile (Frontend) Unit Testing
	7.1.2 Backend Unit Testing

	7.2 End-to-End Testing
	7.3 User validation
	7.4 Version Control

	8 Discussion
	8.1 Issues with implementation of Agile
	8.2 Issues with the received repositories
	8.3 Issues with code and database
	8.4 Evaluation of degree of Gamification
	8.5 Integration team issues
	8.6 Product owner

	9 Conclusion

