Task Management Software

Solution for The Living Room

- Improving Efficiency and Productivity with Java and

Object-Oriented Programming -

Project Report

Group 1

Aalborg University

Electronics and IT

Copyright © Aalborg University 2022

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Task Management Software Solution

for The Living Room

Theme:

Scientific Theme

Project Period:

Fall Semester 2022

Project Group:
1

Participant(s):

Amalie Dilling

Anders Mazen Youssef
Bence Szabo

Freja Liiders Rasmussen
Louise Foldey Steffens
Magnus Holt

Supervisor(s):

Rikke Hagensby Jensen
Copies: 1
Page Numbers: [136]

Date of Completion:
December 19, 2022

Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

This report documents the develop-
ment of a task management software
solution for a cafe called The Living
Room. The purpose of the software
is to streamline the management of
tasks and improve efficiency in a busy
work environment.

Java and object-oriented program-
ming were used to create the appli-
cation, which allows users to create,
assign, and track tasks in real-time.
The use of a task management soft-
ware solution has the potential to ben-
efit the work environment at The Liv-
ing Room by providing a central lo-
cation for task tracking and organisa-
tion. As a result, our findings high-
light the importance of implementing
such a solution in order to improve

productivity.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Preface

Aalborg University, December 19, 2022

Anders Mazen Youssef Amalie Pernille Dilling
amyo2l@student.aau.dk adilli21@student.aau.dk
Bence Szabo Freja Liiders Rasmussen
bszabo21@student.aau.dk flra21@student.aau.dk
Louise Foldey Steffens Magnus Peetz Holt
Ifst21@student.aau.dk mph2l1@student.aau.dk

iv

Contents

[Prefacel iv
(I__Introduction and Motivation| 2
(1.1 _Initial Problem|. 3
(1.2 Report Structure|. 0 L. 3

2 Methodology| 4
2.1 Object Oriented Programming (OOP) 4
[2.1.1 Tterative development model| 5

[2.1.2 Pair Programming| 5

2.2 System Development| 6
221 FACTOR Crterionl 6

222 Class Diagram| 7

223 Eventlablel 7

2.2.4 Behavioural Patterns| 8

225 UseCasesl 8

226 Functions| 8

227 MoSCoW / Criteria| 9

228 FURPSH o 10

2.3 Design and Evaluations of User Intertaces| 10
231 PACT Analysis| 10

2.3.2 Qualitative Research| 11

Contents

2.4 Quality Assurancel 0 oL
241 UnitTesting
242 Userlesting|.
[24.3 Instant Data Analysis IDA)[.

3__State Of The Artl

3.1 Digital solutions currently available|

[3.1.1 Creatingatask]

[3.1.2° Managementoftasks

3.1.3 Accounts, roles,and teams|

Analysis - pt.1: Current System|

.1 First meeting with manager main takeaways|

4.2 First meeting with employee main takeaway|

4.2.1 Current tools used by the Living Room|
4.3 PACT (People, Activities, Context, Technologies)[.
.4 System Definition and FACTOR|
.41 System Definition|. L.

Analysis - pt.2: The new system|

.1 System detinition and FACTOR (new system)|

.2 Rich Picture (new system)|

vi

13
13
13
14
15

Contents

4 [] g

p.o Requirements| 0 .

0.6 Final iteration of the problem statement/

lb_Product
[6.1 Description of the application|.

[6.1.1 Revision of Requirements|

[71 Systemdesign| L oL

[7.3.1 Componentdesign|.
[7.3.2 Architecture diagram|
[74 Uldesign|.

[74.1 Sources of inspiration|

[74.2° The original Ul'idea|

vii

37
38
39
41
41
46
47
48
52

53
53
55

Contents

[8 Implementation|

[9 Quality Assurance|
0.1 Usability Test|

[9.1.1 Exploratory Testf

1 lidationTestl

P2 Unitlesting|

o D; ol

[10.4.1 Gantt and back-casting|

[10.4.2 Pair coding and code review|

10.4. mmunication with clientf

(10.4.4 Groupcontract|

81
81
83
83
86

90
90
90
91
92
95

96
96
97
97
97
98
98
98
99
100
100
102
103
103
104

105

Chapter 1

Introduction and Motivation

This semester’s project is based on the subject, "A well-structured application"[11],
in the context of object-oriented programming. The purpose of this report is to
document the results of the process, in which the group utilises their competen-
cies in object-oriented software design, evaluation and design of user interfaces,
and project management, to develop a functional prototype of a software solu-
tion, which attempts to solve a real-life problem of a client. The business partner
for this project is the co-owner of The Living Room, Frank Zadi. The cafe is
located in the heart of the Latin Quarter neighbourhood in central Copenhagen.
They offer a mix of different homemade foods and drinks during the day, as well
as a wide range of cocktails in the evenings|11] Other than the bar located on the
upper ground floor, they offer a lounge area in the basement filled with couches
and a fireplace for the cold winter months. When it is busy at the cafe and the
staff are under much greater pressure, good resource management is important.
Notably, The Living Room is both a cafe and cocktail bar, which means they have
more tasks than a regular cafe or a regular bar. As of today, countless digital
solutions are implemented to streamline daily responsibilities, such as arranging
work schedules, keeping track of orders, inventory, accounting, etc., but there are

still some aspects of a regular workday at The Living Room, where confusion can

1.1. Initial Problem 3

slip in, bottle-necking a whole day’s work.

1.1 Initial Problem

Although specifying the client company as The Living Room had set some prac-
tical limitations for the scope of the project, narrowing down the problem field
was still a necessary step to reach an issue specific enough to properly address
during a relatively short time frame. Therefore, the initial problem was identified
following a meeting with Frank, a walk-through of the information collected, and
a subsequent follow-up conversation. Regular consultations with the client were
essential for achieving a mutual understanding and ensuring that the client’s de-
mands were met. The initial problem field of the project, task management, was
selected, as it was deemed to be the root of several other issues, and the solutions

currently implemented were the most unsystematic and ineffective.

1.2 Report Structure

The project structure leans heavily on the Software Development Life Cycle (SDLC)
models; iterative and waterfall. The creation of the application and the project
as a whole have primarily followed a linear process, however, certain sections
(design, implementation and evaluation) have been conducted multiple times.
The primary motivation behind this hybrid structure was to make up for a tight

schedule while applying feedback and improving the product.

Chapter 2

Methodology

2.1 Object Oriented Programming (OOP)

At Aalborg University, the fundamental principles of object-oriented program-
ming are taught using Java programming language as a foundation. During the
course, subjects such as classes, interfaces, inheritance and more are taught and
explained. These subjects are taught in a way so that they are loosely coupled,
with the purpose being, that they can easily be exchanged without impacting
the rest of the program. In short, object-oriented programming (OOP) is a computer
programming model that organizes software design around data, or objects, rather than
functions and logic.[16] Furthermore, concepts such as problem-handling, excep-
tions and testing are also explored. Participants of the course are also taught to
write clean and correct code, which means that the code should be easy to under-
stand, fix and test. All of these subjects and more are taught through in-person
lectures and exercises. The product was developed while leaning heavily on the
knowledge gained from this course, while also using tools discovered outside of

it.

2.1. Object Oriented Programming (OOP) 5

2.1.1 Iterative development model

The iterative development model is used for developing a software solution in
cycles and dividing the problem into smaller parts, often revising specifications,
and returning to previous conclusions. The main idea of the iterative model is
to learn from previous cycles and use the new knowledge in future iterations.
Before the project enters the different cycles, the team must create a plan for
the project. When the initial planning is done the team can start to look at re-
quirements and then analyse and design those requirements before implement-
ing them. After the requirements have been implemented the team must test the
implementations and thereafter evaluate the entire cycle. When the evaluation is
done, a new cycle begins with a planning phase of that specific cycle [20]. An-
other approach for a development model is the waterfall model, which is mainly
focused on planning the entire project’s development structure before beginning
on the project itself [2]]. The iterative model was used for the development of the
product because it is a bit more flexible in terms of when to work on different

aspects of the project.

2.1.2 Pair Programming

Pair programming is the practice that can be applied during the implementation
phase of the project, during coding. With this method, two people work together
to plan the logic behind a chunk of code, and while one developer writes the
code the other observes or discusses better options with their partner. This way
the developers get to offer diverse solutions to problems, and in the process catch
errors and write simple and easy-to-understand code [9]. Another style of pro-
gramming is extreme programming which focuses on the client’s requirements
and leads to close contact between the developers and the client [4]. Extreme

programming was not used due to the client not having enough time.

2.2. System Development 6

Pair programming is used in the project to make sure that the whole group has

a collective understanding of the program and to ensure understandable code.

2.2 System Development

Developing a new system that works is a complex course of action, in most
cases requiring several revisions and discussion of many aspects. The follow-
ing models and methods used in this project should not be seen as individual
pieces, but rather as cogs in a larger machine, working together to produce a

well-functioning system.

2.2.1 FACTOR Criterion

The FACTOR criterion is a method used to divide a system description into dif-
ferent criteria or to create a system description. FACTOR breaks down one’s
system definition into its more crucial elements, and can therefore be a useful
tool when creating the system definition or defining the main elements of the

system. The FACTOR criterion consists of six different criteria[25]:
Functionality: The system functions that support the application domain tasks.

Application domain: Those parts of an organisation that administrate, monitor, or

control a problem domain.
Conditions: The conditions under which the system will be developed and used.

Technology: Both the technology used to develop the system and the technology on

which the system will run.
Objects: The main objects in the problem domain.
Responsibility: The system’s overall responsibility in relation to its context.

[25].

2.2. System Development 7

The FACTOR criterion process is an iterative process, meaning it is to be rewrit-
ten until the FACTOR criteria are consistent with the system definition. Small
changes in the different elements can lead to significant changes in the system,
and discussing variations of the elements can contribute to systematic possibil-
ities and choices. The FACTOR criterion’s main goal is to satisfy the customer

and users by creating a system that aligns with their expectations. [25].

2.2.2 Class Diagram

A class diagram is a map of a system.[25] It is a model to understand the objects,
which were found from the problem domain and their relationships. The class
diagram provides an insight into the classes by displaying them in relation to
each other and in structures. In short, a class is a template for creating objects and
implementing behaviour in a system. An object is an instance of one or multiple
classes [25]. The class diagram was used to gain an overview of the classes and

how they relate and associate with each other in relation to the problem at hand.

2.2.3 Event Table

An event table plays a big role in modelling the problem domain. Various phe-
nomena involved in the problem domain are abstracted by viewing them as ob-
jects and events. The objects are then classified and afterwards an event table is
made. The classes can be seen on the horizontal dimension, while the events are
placed on the vertical dimension. When a notation is placed within this table, it

indicates which objects from a given class are involved in a specific event.

In this case, the event table helped to develop eventual use cases between the
user and the program. In turn, this also leads to specifying the functions of the

system.[25]

2.2. System Development 8

2.2.4 Behavioural Patterns

The behavioural patterns are state charts used to describe and display the be-
haviour of the classes in the problem domain [25]. The idea of this model is to
use the events from the event table to explore the behavioural patterns in each
class. The behavioural patterns will produce a number of attributes for each
class. The incentive to apply this method was to comprehend the behaviour of
each class and figure out what attributes should be applied, in the context of the
problem. Also, behavioural patterns should be representative of reality, although
some simplifying is most likely needed in order to provide an easily-digestible

representation of a class’s behaviour.

2.2.5 Use Cases

Use cases are a way to describe the actors” interaction with the target system and
are used to analyse the existing application domain. Use cases are used due to
their low abstraction level and focus on the interaction between the actors and the
system. A use case is a delimited use of a part of the system and can be initiated
by an actor or the target system. To find use cases, the developers cooperate with
the users and look at their needs. Although a use case comes from an actual
need, a use case is an expression of a solution in itself.[25] When all the relevant
use cases are found and described in detail, the developers can create an actor
table. An actor table is used to visualise which use cases involve which actors

[25].

2.2.6 Functions

Functions are used by the system to assist actors of the system in their work.
The definition for a function is “a facility for making a model useful for actors” [25].
Functions can be divided into different types of functions, the most common

listed here:

2.2. System Development 9

Update functions are activated by a problem domain event and result in a change

in the model’s state.

Signal functions are activated by a change in the model’s state and result in a
reaction in the context; this reaction might be a display to the actors in the

application domain, or a direct intervention in the problem domain.

Read functions are activated by a need for information in an actor’s work task

and result in the system displaying relevant parts of the model.

Compute functions are activated by a need for information in an actor’s work
task and consist of a computation involving information provided by the

actor or the model; the result is a display of the computation’s result.
[25].

Functions are used during the analysis to get an overview of the system from a
functional point of view.[25]. The functions found in this system were divided
into the 4 function types listed above, and they were given a complexity based

on the difficulty of implementing them.

2.2.7 MoSCoW / Criteria

The MoSCoW method is used to prioritize the requirements of the system and

consists of four different categories:

"Must have: fundamental requirements without which the system will be unworkable

and useless, effectively the minimum usable subset.

Should have: would be essential if more time were available, but the system will be

useful and usable without them.

Could have: of lesser importance, therefore can more easily be left out of the current

development.

2.3. Design and Evaluations of User Interfaces 10

Want to have but won’t have this time round: - can wait until later development.”
[5].

In this project, the MoSCoW method is used to prioritise the functional require-
ments. All the must-have requirements form the basis of the minimum viable

product (MVP).

2.2.8 FURPS+

FURPS+ is a method to find architectural requirements, whether they are im-
plicit or explicit, by conducting interviews, looking at state-of-the-art and the
analysis of the system. It consists of five different categories: Functionality, Us-
ability, Reliability, Performance, and Supportability. The "+" represents further
concerns such as design requirements, implementation requirements, interface
requirements, and physical requirements. The model is used for this project to

categorise the non-functional requirements [15]].

2.3 Design and Evaluations of User Interfaces

2.3.1 PACT Analysis

When designing a user experience (UX), the designer must be aware of the people
and activities they are undertaking, how their activities play a role in the context,
and what type of technology they have at their disposal. The following four
elements make up the PACT analysis[5]:

People differ in terms of physical characteristics, psychological differences and in their

usage of systems.

Activities differ in terms of temporal aspects, whether they involve cooperation, com-

plexity, whether they are safety-critical and the nature of the content they require.

Contexts differ in terms of physical, social and organizational aspects.

2.3. Design and Evaluations of User Interfaces 11

Technologies differ in terms of the input, output, communication and content that they

support.

(5l

In the case of this project, a PACT analysis was done to assess the current sit-
uation at The Living Room, understanding where possible improvements could
be made in terms of the staff and their needs. Finally, all of this was used to
envision an improved future situation for both the employees and the manager
during an average workday. An analysis method such as this streamlines the

process of tailoring a product that resolves the needs of the subject.

2.3.2 Qualitative Research

Qualitative methods have become an increasingly prominent part of fieldwork
spanning from humanistic and social sciences, where they are more commonly
used, to natural sciences. The qualitative methods seek to understand, describe,
and interpret the world and human lives by researching human perspective, ex-
perience, and perception. In a way, the research is done from within human life
rather than describing what is visible from the outside, making the research more
elaborate and adequate. Contrary to quantitative methods, qualitative methods
do not use numbers and quantities to describe a particular issue. The qualitative
methods take advantage of, among other things, spoken statements and reports
from individuals who represent certain views on situations to understand the un-
derlying workings of, for instance, societal relations or other relations in general.
One of the commonly used methods for retrieving qualitative data is interviews

[37].

Interviews

An interview shares a lot of similarities with an ordinary conversation, with the

main difference being that there is a specific purpose for an interview [36]. It is

2.3. Design and Evaluations of User Interfaces 12

a method of gaining information with human interaction. In this project, it was
beneficial to understand how satisfied a business was with its current workflow.
The first step of planning an interview is to choose its structure. Every interview
requires preparation, and each structure has its advantages and disadvantages.
Each case requires a different structure, and choosing the right one is essential for
gathering relevant information. Interviews are often conducted with two people;
an interviewer and an interviewee. It is also common to interview subjects in
groups. The group approach is often used in social science research, which is
why it was not used in this project. Interviews can be either unstructured, semi-
structured, or structured. An unstructured approach to an interview would be a
good choice for open-ended interviews; for instance, if the interviewer is curious
about the interviewees’ first impressions of a new interactive design feature. On
the other hand, if the interviewee is supposed to share their opinions about a
particular design feature, such as a web page, a more streamlined approach, like
a structured interview, might be the better choice. The semi-structured approach
is a combination of structured and unstructured approaches. It was also one of
the two interview approaches that were used during the conversations with the

client.

Unstructured interview

Unstructured interviews, also called open-ended interviews, are one method of
gathering information through an interview [36]. With a structure like this, there
is almost limitless depth to an interview, since questions are not limited to simple
“yes” or “no” answers. Answers can be as detailed or brief as one wishes, and
the conversations can be steered both by the interviewer and the interviewee.
The responsibility of the interviewer is to make an agenda of the main topics that
should be covered, so as not to lose structure in the interview if it ever deviates
from the intended topic. During the interview itself, there should be a balance

between making sure that the questions and answers received are relevant, while

2.4. Quality Assurance 13

also being able to follow new lines of inquiry that were not necessarily intended.

The unstructured approach was used during the first interview with the manager
of The Living Room, as there was a need to be open-minded and exploratory,
while also giving a good first impression by having a relaxed structure to the

interview.

2.3.3 Observations

Observations are another way to collect qualitative information. When observing,
one takes note of anything eye-catching regarding the problem. Observations are
made in the context where the problem unfolds and can be helpful when it is
difficult for people to put the problem into words. Other times interviewees
take their routines for granted and therefore forget to describe them. Again,
observations can help cover any information lacking in this aspect.[5] For this
project, observations have contributed to better modelling and understanding of

the context of the problem.

2.4 Quality Assurance

2.4.1 Unit Testing

Unit testing concentrates on testing "units" of the program. A unit is a piece
of code or method that is present in the system. The unit is tested separately
from the program, meaning it is ignoring the rest of the system when being
tested. When performing the unit tests, the developers ensure that the desired
output is returned from the unit often using dedicated testing frameworks such
as JUnit and assertions. All the unit tests for this system were based on the
return statements of its methods. The unit tests were done before committing to

the actual program to verify the newly written code [35].

2.4. Quality Assurance 14

2.4.2 User Testing

User testing is a subbranch of usability testing and focuses on the end user’s
experience with the system. The test is performed by participants who are a rep-
resentative of the end users. The developers must prepare a set of tasks for the
participants to complete and observe while taking notes of how they perform.
When performing the tasks, the participants should follow the thinking-aloud
procedure. This will help the observers of the test to get a better understanding
of the logic and way of thought of the participants when they try to solve the
given tasks. User testing can be done as a field- or lab test. They both have their
advantages and disadvantages e.g. a disadvantage of the lab test is that it can be
unnatural. Inspection is another form of user testing where an expert in UX de-
sign or usability reviews the design. This was not done for this project as it would
be too expensive compared to the tests performed with the test participants. A
third method is to gather data on system performance once it is deployed. Since
the system was not meant to be deployed officially, this method was not an op-
tion.[34] Usability tests can be done with different approaches in mind and at
different stages of development. These three approaches are called exploratory,
assessment, and validation [34]. The exploratory test is done early in develop-
ment. It is usually done with low-fidelity wireframes to iterate different concepts
and discuss them quickly. An assessment test comes after the exploratory test as
it tests the usability of the product with the concepts that were summarized from
the exploratory. This test can include slightly more interactivity compared to the
previous one. The final usability test is the validation test, which is done late in
the development cycle and follows up on the research done earlier in the process
with the exploratory and assessment tests. The validation test includes a prod-
uct that is late in its development cycle, and therefore more complete than the
previous designs. The test is slightly faster and more cost-efficient compared to

the previous ones. These three approaches were all used in cooperation with the

2.4. Quality Assurance 15

staff at The Living Room, to ensure a good user experience. Different iterations
of the design were presented, tested and discussed, all at different stages in the

development cycle.

2.4.3 Instant Data Analysis (IDA)

IDA is a technique for reducing the efforts spent on analyzing data when evaluat-
ing a usability test.[23] By using this technique, it is possible to conduct an entire
usability evaluation in a day. It is not necessarily the most optimal technique
to uncover every potential problem, but it is efficient in considering its speed.
It works by quickly identifying the most crucial problems regarding the usabil-
ity of a software system. IDA is used immediately after the usability test has
been conducted, and it is recommended to have 4 to 6 think-aloud sessions, that
are structured in the same way as the aforementioned user tests[2.4.2) The host
and observer of the usability test articulate and discuss the most critical usability
problems, they noticed during the sessions with the participants. Afterwards, it
is recommended to rate the severity of these issues. This can range from cosmetic
to serious, to critical, and finally catastrophic as seen in figure The identified
problems can then be inserted into a problem list, which makes it easier to see

the number of issues.

2.4. Quality Assurance

Irritation

Cosmetic < 1 minute

Several Significant
minutes diff.

Serious

Total Critical diff.
(user stops)

16

Figure 2.1: Problem types. The missing "catastrophic" type stands for a failure from which recovery

is not possible.

Chapter 3

State Of The Art

Considering the specificity and scope of the problem at hand, there are cur-
rently no publicly available software solutions, which could be considered ap-
plicable. There are, however, similar task-administration tools catered towards
project management. Although the focus of these applications differs from this
project’s, some of the problems they attempt to tackle are quite similar to the
ones this project is facing. In this section, the most relevant available products
are discussed and sectioned into specific functionalities. The choice of products
featured and discussed in this section was primarily based on applicability to
this project’s specific goal: daily task management. The products were tested as

if they had to be used in the context of The Living Room.

3.1 Digital solutions currently available

During the search for relevant digital solutions currently available, a handful of
popular project management solutions were found. The most relevant ones were
Connecteam [10], Monday.com [27], Trello [41], and Microsoft Azure DevOps
[13]. Each product approaches project management in a slightly different way

but offers an overall similar set of features with diverse focus points.

17

3.1. Digital solutions currently available 18

»
88
Quick Tasks

f

) ' ® €D
B

- Al 4 tasks In total e done tasks

! £ dat !
d, o B

@
@ : i Ao

Figure 3.1: Overview of tasks in Connecteam

3.1.1 Creating a task

When creating a task, the following fields were available across the board: Ti-
tle, description, and assignees. Connecteam and Monday also offer assigning
a degree of urgency/priority to the task, as well as a frequency (daily, weekly,
monthly), or a deadline. Monday also offers sub-tasks, in case a larger task is to

be broken down into smaller assignments.

3.1.2 Management of tasks

Throughout all the apps, depending on one’s role, tasks can be freely edited, or
comments can be added. In both Azure and Trello, the status of tasks is also
manageable. For instance, a task can be "active" or "resolved". The history of a

project and archived tasks are also traceable.

3.1. Digital solutions currently available 19

- Edit task
Sub tasks
Assignto - Bence Szabo
Location Minchen, Tyskland
Frequency
Starting from 9/21/2022
Daily Every 1 Days at 13:09
End repeat After 5 tasks
Notify me when this task recurrence starts
Due 60 Minutes After the task's start time

Labels

Publish task

Figure 3.2: Editing a task using Connecteam

3.1.3 Accounts, roles, and teams

The hierarchy of the users is in essence broken down into administrators and
regular users. Administrators are responsible for creating tasks, managing their
properties, and assigning users to them, while regular users can update their
status and write comments. Connecteam also uses a collection for regular users,
called "teams", to give the admin the possibility to hide irrelevant tasks that do
not belong to the group of users. In a workplace where the responsibilities of the
employees can be broken down into larger partitions, this feature can provide a

less overwhelming overview.

3.2. General Data Protection Regulation (GDPR) 20

3.1.4 Miscellaneous

All of these software solutions are web applications primarily designed for desk-
top computers. Since they are project-based, these applications are not designed
for the day-to-day running of an establishment. Timelines in these apps are de-
signed to depict progress on a monthly basis, rather than give a daily overview.
Interacting with these interfaces and updating statuses are also time-consuming
activities, as they are designed for an office setting. The user interfaces are (with
Trello being an exception) rather complex, considering most of the users would

only use a small handful of functionalities.

3.2 General Data Protection Regulation (GDPR)

To preserve and store personal data, one must either have legal authority or a
legitimate purpose [6]. Examples of what legal authority is in this scenario are

usually one of the following:

1. You have consent from the person whose data you are storing
2. You are required to do so by the law

3. Itis needed to uphold a contract or promise

Deciding on a legitimate purpose is difficult, but there is a popular exam-
ple regarding job applications. If your business receives job applications, saving
those applications for a year is considered a legitimate purpose. The reason be-
hind this is that the chances of that applicant still being available after a year is
low. Another requirement is that the users need to be able to delete their data
from the platform storing their personal data. This also needs to be available if
a law authority decides that the business no longer has a legitimate purpose for

storing the user’s data.

3.2. General Data Protection Regulation (GDPR) 21

But what exactly is personal data? The Danish Data Protection Agency splits
personal information into three different types; non-sensitive, sensitive, and law-
ful information [12]. Non-sensitive personal data covers information that does
not necessarily put the person at risk. Examples of this could be a name, ad-
dress, age and education. The aforementioned job application would also fall
under this category. Sensitive personal data covers information that could put
the person at risk. Subjects like race and ethnicity, political views, sexual orien-
tation, and medical information are all important parts of this category. Lawful

information covers criminal records et cetera.

The product of this report is only expected to store the user’s name, the field
of work they are assigned at their workspace, their phone number and email.
This should give the manager a legitimate purpose to store the information, as
it does not put any of the employees at risk necessarily. As of now, the manager
already possesses all of the data mentioned. Last, but not least, there is also a
method that allows for the data of an employee to be permanently deleted from,

not only the application but also the database where it is stored.

3.2.1 Conclusion

As mentioned before, these are solutions to long-term project management, how-
ever, that does not mean there is not resourceful information to be gathered from
them. The fields required for creating a task in these solutions would also be
beneficial for The Living Room, as fields like these were present, not only in the
current solutions of The Living Room but they were also requested by the owner.
Both of these topics will be explained in depth later on. Being able to edit and
leave comments on tasks like in Azure or Trello would be a viable alternative to
calling/texting the assigned person, which is what The Living Room currently
does frequently. Having a task status ("active" or "resolved") would be a good

way to structure the database storing the tasks, as it increases comprehensibil-

3.2. General Data Protection Regulation (GDPR) 22

ity. Using a similar hierarchy with an administrator and a regular user would
make the product familiar for the users, as it gives them the same solutions as
their current system, but in a more streamlined and efficient way. Together with
GDPR, all of these features, and more, would be valuable for the product created

for The Living Room and will be considered in the requirements later on.

Chapter 4

Analysis - pt.1: Current System

The analysis section of this report is divided into two subsections; the current
system, and the new system. The current system section encapsulates an analy-
sis of the currently deployed system, as well as its flaws and challenges. The new
system section contains a description and analysis of a new system serving an
identical purpose but providing a more optimal solution. This will be the prod-
uct of this project. The main motivation behind structuring the analysis section
in this fashion was to clearly separate old and new systems for the reader. The
old system and the observations done on it provided a lot of valuable inspiration

for the way the new system was defined.

The project’s degree of success may be judged on the level of improvement be-
tween the two solutions. The evaluation of both functional and non-functional
requirements as well as usability are expected to give a satisfactory conclusion

regarding this.
Starting out with an understanding of the fundamentals of the problem domain

is essential in order to begin a problem-solving process. Note, that a perfect un-

derstanding is arguably impossible to achieve, but it is expected that the degree

23

4.1. First meeting with manager main takeaways 24

of comprehension is refined through good communication with the client. There-
fore, an analysis of the situation was conducted, with the help of two interviews,
one unstructured and one semi-structured, getting both the manager’s and an
employee’s insight into task management. A field investigation was done by ob-
serving the everyday work environment of The Living Room over several days,

in order to gain a better understanding of the context.

4.1 First meeting with manager main takeaways

The Living Room is a cafe by day and a cocktail bar by night, which results in an
extended list of very different tasks. Their current solutions for task handling are
very basic and their tasks are usually given out by word of mouth, SMS, e-mail,
and Google Sheets documents. On top of this, they also write tasks down on
physical paper and check the tasks off there whenever they are done. Reminders
of these tasks are also dependent on memory alone, or if someone reminds oth-
ers, which would also be in person or over text messages. Some tasks can be
done by anyone, but others need to be done by specific people based on their
expertise. Specific tasks need to be filled out in a form on a computer, and the
application to fill out the form has to be paid for. The level of urgency of a task is
only indicated by the tone in which it was given, and there are often descriptions
missing from these tasks. All of this leads to a scattered structure since there is

no overview for either the manager or the employees.

Ideally, the owner would like to manage tasks digitally from a single platform.
They would want the tasks to be given out uniquely and on a given frequency,
such as daily, weekly etc. Some tasks could have conditions, such as multiple
steps. There should also be a way to assign tasks to a specific employee. A
feature involving due dates is important, which implicitly touches on the pos-

sibility of handling overdue tasks. Some tasks are also going to need a specific

4.2. First meeting with employee main takeaway 25

form in order to be completed. Examples of this are the logging of tempera-
ture, which is a requirement by The Danish Veterinary and Food Administra-
tion (Fodevarestyrelsen). Although a number of problems and suggestions were
made by Frank, only a handful will be addressed, since the scope of the project
must be narrowed down to provide an optimal solution. All in all, there is a clear
desire for a uniform overview of tasks, in which both manager and employee can

see what is going to be done and what has been done during the day.

4.2 First meeting with employee main takeaway

It is essential to gather information from a source different from the manager
to establish a more objective comprehension of the problem domain. There-
fore, after a basic understanding of the work environment had been acquired, a
semi-structured interview was conducted with an employee of The Living Room.
Additionally, most employees are also users of the solution, so they are to be con-
sidered important stakeholders in this project. The thematic structuring of the

interview is the following:
¢ General information about the interviewee
¢ Experience with task management and daily life at The Living Room
¢ Currently applied solutions for task management and issues

The structuring is done this way in order to confirm the relevancy of the person
in question, acquire a better understanding of the current work environment and
types of assignments, and learn about the tools currently applied and potential

problems connected to task management.

All quotes provided in this section are direct transcriptions of the interviewed employees’

statements.

4.2. First meeting with employee main takeaway 26

An important new discovery was the significance of documenting the comple-
tion of daily tasks: "If we have a really busy day, then we often do not get to prep as
early in the day [or before closing time] (...)". "[If someone takes over my task] we would
say it verbally.”. The quotes from the employee imply that if the cafe is busy, the
closing and early morning prep tasks do not get completed and the only way to
know about the uncompleted tasks is by word-of-mouth. For that reason, it is
not certain that the information about the tasks gets delivered to the right em-
ployee. Therefore, communication between employees is not an issue, however, a
lack of overview regarding remaining and already active assignments can cause
problems - “[If I did] simple everyday assignments, I would not tell anyone. My col-
leagues would assume it is solved. But sometimes I would include a little comment.” .

As for critical tasks, which require confirmation, an employee would text or call

the manager to tell if the task was done or not and simply tell the rest of the staff.

As for the daily tasks, there are clearly a lot of frequent tasks. However, the
completion and deadline of the tasks can vary with regard to other spontaneous
assignments and the number of customers: “I feel that there is quite a lot of routine
in when the different things are done, and what can make schedule day vary is the number
of customers, and how busy we are.”. The role of employees is also very fluid, so

everyone should be able to complete any frequent task.

Further observations of The Living Room

Observations were as earlier stated used to get a better understanding of the work
environment. The observations added a few new views of how the employees
work and under which circumstances. There were about 3 bartenders working
at the bar at all times, and one collecting dishes every 30 minutes. There is quite
a lot of noise and music, which adds to the busy work environment. Verbal
communication is frequent, and a standard IPad (2022) is often passed around

for documentation purposes.

4.2. First meeting with employee main takeaway 27

Figure 4.2: The inside of The Living Room, with the bar upstairs and seating areas on and below

the ground floor

4.2. First meeting with employee main takeaway 28

4.2.1 Current tools used by the Living Room

To achieve a better understanding of the current situation at The Living Room,
the owner shared documents that the staff currently use for task management.
This material was largely helpful for analysing the situation because these are
essentially the tools that are expected to be replaced by a more optimal digital

solution.

The first document is called LR Weekly Tasks.xIsx [11] and it contains static tasks
that need to be done on a weekly basis. The document consists of a table, which
is created in Google Sheets and is viewed online, not printed out. The table
includes the different tasks with the title of the task, which employee has the re-
sponsibility for that task, and the phone number of that employee. This is a very
basic solution and could be improved. There is no way to let your colleagues
know if you have done your task or if there is an issue. It is possible to do this
in Google Sheets, but it is done with the help of custom scripts. This is not ideal
as it is highly repetitive and poorly maintainable, and should therefore be taken

into consideration going forward.

The second document is called LR Hygiene Forms.xlsx [11] and is used to record
the degrees of different areas of the establishment and various food items. This
is a requirement by The Danish Veterinary and Food Administration and should
therefore be formulated and formatted following strict guidelines. Possible ways
of improving this could be reminders if it has been done, indicating possible mis-
takes, or possibly incorrect or illegal values. Beyond that, it could also notify the

user or administrator if the temperature recorded is abnormal.

The last document is called LR Bar Routines.docx It is a sheet that contains

all the daily routines, and is printed out and filled out physically throughout the

4.3. PACT (People, Activities, Context, Technologies) 29

day. There are various tasks divided into three sections depending on the time of
day they must be done. When a task is completed, the staff member that did the
task has to sign their initials on the list of tasks. There is no way to tell if another
staff member is currently doing a task, which could be beneficial to the overall
efficiency of the establishment. Beyond this, there is no way for an administrative
role such as a manager, to update this list of tasks dynamically. A staff member
would also be completely oblivious to any missing tasks from prior days if the

physical piece of paper was not documented well.

4.3 PACT (People, Activities, Context, Technologies)

Now that there has been established a general understanding of the users, their
daily routines, and the tools at their current disposal, a PACT analysis can be
used to put these elements in context and create a briefer summary in order to

gain a better overview and start designing a new solution.

People: The system consists of two main groups; 25 employees and the man-
ager, Frank. Employees can also be broken down into bartenders and cleaners
based on their field of expertise. They are all at least partially experienced in the
service industry and in the general responsibilities at the cafe. They are comfort-
able with operating computerised systems. A number of the employees working
at The Living Room are students who work on the side. There might be a slight
language barrier due to the difference in the manager’s and employees’ native
languages. Some people might have slightly bad eyesight or be colourblind,
which could have an effect on the pace at which they interact with digital user
interfaces. People can also have different perceptions of the urgency of tasks.
There is also a hierarchical difference between the manager, Frank, and his em-

ployees.

4.3. PACT (People, Activities, Context, Technologies) 30

Activities: The main purpose of the activity is to administrate tasks in The Liv-
ing Room on a daily basis. The activity is mostly consistent but may include
sporadic urgent tasks. Tasks can be everything from cleaning or completing spe-
cial orders, to fixing a coffee machine. The activity includes several steps done in
a specific order; a task is given to the employee by the manager, the task is either
completed or failed, and feedback is eventually given to the manager. Some tasks
given by the manager are considered routines, which means that they do not re-
quire direct feedback. Some activities require multiple employees or a specific

employee.

Context: The activity takes place indoors at The Living Room and happens un-
der relatively calm circumstances for Frank; either in his personal office or at any
sitting place. The bartenders, however, can be under a lot of stress depending
on the number of customers they have to serve, and verbal communication can
be difficult due to the general noise and music playing. The employees support
each other during their shifts even though they have different roles or respon-
sibilities. The employees responsible for morning shifts clock in at work one
hour before the cafe opens to complete regular morning routines and finish any
leftover tasks from the day before. The bartenders also partake in cleaning and
collecting used dishes from the tables. Meanwhile, other bartenders take care of
customers, which is their main concern. When there are no customers present,
the employees usually have some tasks to do, which the manager provides a list

for.

Technologies: The manager enters the routine-based tasks into a self-made form,
and prints it. The employees can mark the tasks on the paper as completed with
the use of a pen. The manager communicates infrequent, spontaneous, or espe-
cially important tasks with the employees via SMS or email when he is not at

work.

4.4. System Definition and FACTOR 31

4.4 System Definition and FACTOR

4.4.1 System Definition

A system used at The Living Room by the manager to administrate the staff’s
daily and weekly tasks. The primary purpose of the system is to support the
manager in organising daily and weekly tasks for the staff to resolve during their
shift. This is done by using a template printed out on a piece of paper, containing
the overview of the tasks and a tablet which is implemented to update the tasks
within the template if needed. Otherwise, the manager calls or sends an SMS if
urgent tasks, or any changes or unexpected events, occur. The staff’s only relation
to the system is when they are marking off their resolved task(s) by signing the
correct field with their initials. The manager makes the system in cooperation
with the employees at The Living Room, and the system is accessible without

needing any IT skills.

44.2 FACTOR

Functionality: The functionality of the system is to provide the staff members
with a physical piece of paper that contains a list of daily and weekly tasks for

them to complete and fill out.

Application domain: The system is to provide a reliable checklist to assure that
the tasks at The Living Room are completed, and in turn, give a better overview
for every staff member. The system is used by the manager when adding or re-
moving daily or weekly tasks from the given lists. The employees’ relation to the

system is that they have to sign the document when the given task has been done.

Conditions: The system is made by the manager at The Living Room in co-

operation with the employees of The Living Room. Users use the application

4.5. Rich Picture (current system) 32

with varying levels of work-related skills.

Technology: The system is used physically at the Living Room in the form of
three different documents; two of the documents are on a piece of paper and one
document is accessible on a tablet. In case lists need to be updated, the manager
would have to print a new piece of paper and inform the employees or update

the document on the tablet.
Objects: Task, task list, employee, manager, The Living Room.

Responsibilities: The system supports the administration of daily and weekly

tasks at The Living Room by providing an overview of the tasks.

4.5 Rich Picture (current system)

This section contains a rich picture describing the current situation at The Living
Room as shown in figure [4.3| below. The format is very simple, but it leads to
miscommunication between the employees and the manager. The main takeaway
is that the rich picture shows conflicts regarding the lack of a uniform platform
and structuring when assigning a task to an employee. More specifically, the
manager communicates through too many platforms, which makes the logging

of information difficult.

4.6. Conclusion 33

o The L;i(ng Room \
| %MT%“S

Bartender @ Manager

X

Lyl

Response
=
Y i "Working"
» |Task Task
Bartender 4 ar 3

Figure 4.3: Rich Picture For The Current System

4.6 Conclusion

From this analysis, it can be concluded that the current system has both its faults
and advantages. The advantages are its simplicity and straightforwardness. The
faults belong to the multiple platforms that the system uses, which can easily
lead to miscommunication. With this new comprehensive understanding of the
problem at hand, there is a clear focus on what an improved system should try

to incorporate.

Chapter 5

Analysis - pt.2: The new system

Following the analysis of the currently deployed system, the next step is to at-
tempt to define a new system. The new system’s responsibilities and other as-
pects are likely to be similar. Yet, the solution itself should be more optimal
considering the problem field. Beware, that the new system and its details are
frequently updated and adjusted, taking knowledge gathered through the project
and development into account, as well as feedback and testing with each itera-

tion.

5.1 System definition and FACTOR (new system)

System Definition: A computerised system used to administrate the employees’
regular daily routines and weekly tasks defined by the manager at The Living
Room. The system should primarily be an administrative tool but secondarily
serve as a communication medium between the manager and the employees.
The system should be available on both a PC and a tablet and it should also be

able to function in a busy work environment.

Functionality: The functionality of the system is to administrate tasks between

the manager and the employees at The Living Room and register the information

34

5.1. System definition and FACTOR (new system) 35

about the tasks. The system also supports communication between the manager

and the employees.

Application domain: The system’s main purpose is for the manager to adminis-
trate the employees and their tasks at The Living Room. The system is used by
the manager when defining either regular daily or weekly tasks or communicat-
ing work-related issues at The Living Room with the employees. The employees’
relation to the system is when they have to report back if the given task has been

done or if there is a work-related issue.

Conditions: The system is developed by Group 1’s developers in cooperation
with the co-owner and manager of The Living Room, Frank Zadi, and with the
help of a handful of his employees. It may be necessary to resolve conflicting
requirements between Group 1 and Frank. Users of the application may possess

slightly varying technological expertise and IT skills.

Technology: The system is to be provided as a desktop application and running
on the manager’s computer and one or more tablets placed at The Living Room.
It communicates through a client-server architecture that handles the tasks and
their information using models. If the client-server architecture fails, all the nec-

essary information is available in a database.

Objects: Task, task list, employee, manager, The Living Room (Cafe).

Responsibilities: The system supports the administration of daily and weekly
tasks at The Living Room. This is done by providing a complete overview of
the tasks and the assigned employees. It also facilitates the manager and the

employee’s ability to comment on the tasks.

5.2. Rich Picture (new system) 36

5.2 Rich Picture (new system)

This section contains the rich picture for the system as shown in figure5.T| below.
The main difference between this and the rich picture of the current situation is
that the manager no longer has to be at The Living Room to assign tasks or help
with issues regarding tasks. The new rich picture also makes the administration

and overview of the tasks more manageable.

The Living Room
- Normal routine work
o fr. - Checks streen if there is Retums to screen and
0O M i time for exira assignment reports problem / status

Sends task %

Manager I I

Ehplwee Employee

Confirms
SUCCEs on
Screen

¥ i Failure
Reports problem or % % X
incomplete status = J Succes

“Works on
spacific task®

£
I
B
>0

A

ragarding a task

Employee Employee

Figure 5.1: Rich Picture of The New System

5.3 Problem Domain

Following the FACTOR analysis and rich picture, an analysis of the problem
domain can be made. The problem domain has two principles which should be
followed, the first one being: Model the real world as future users will see it. [25] The
second principle is: Get an overview first, then supply details. [25] When following
these principles, many details and alternatives to the final system will occur.

For readability reasons, only the concrete system and how it was made will be

5.3. Problem Domain 37

presented in the report.

5.3.1 Class Diagram

This section contains a description of the structural relationships between the dif-

ferent classes and their different fields. The class diagram can be seen in figure

62

In order for the system to support task management at The Living Room, the
system is segmented into four classes: cafe, which is The Living Room; person,
an abstract class divided into two classes employee and manager; Task list, con-
taining all tasks; and lastly task, containing all properties of an individual task

(class-specific states and behaviours are later defined in the component-design

section [7.2).

The classes employee and manager are depicted as a generalisation from the
abstract class person, because they are both a person as seen in the figure, but

are expected to contain unique attributes.

The system has some aggregations between the classes for example a cafe has
a person since the person is working at the cafe. A task also has a person as
an aggregation because a person can be assigned to a task and a task cannot be
assigned to a person (a person belongs to a task). A task list has a task as an

aggregation due to every task belonging to the task list.

Lastly, the system has some associations: cafe and task are connected, as all
tasks belong to a specific cafe. Without a cafe existing, tasks would not belong

anywhere, therefore an association is required.

5.3. Problem Domain

= Cafe 1 0.* = Task 0.* 1

Tasklist

38

1.2 B Person

i
(|

= Employee = Manager

Figure 5.2: Class Diagram

5.3.2 Event Table

The event table is presented in figure |5.3| and shows which events each class in

our system is able to participate in. As seen in figure |5.3| the classes employee,

manager and task are the main classes of the system due to all the events they

are involved in. The task class is involved in all the events except employed and

tired/resigned. The task list class is involved in the events involving changing

the status of the task or displaying it. The cafe class is only participating in the

events concerning employing and resigning employees.

5.3. Problem Domain

39

Employee Manager Task Tasklist Café
Defined * *
Assigned * * *
Completed + + + +
Cancelled + + +
Reassigned | * * *
Employed + + +
Fired / + + +
Resigned
Reminder * * *
sent
Problem * *
reported
Displayed * *

5.3.3 Behaviour

Figure 5.3: Event Table

This section provides state-chart diagrams for the classes in the system along

with a description of the states and transitions.

First task is
added to
tasklist

o

Task added

N\

Task
displayed

~

[Tasklist has tasks J 5 ©

NS

Task
completed

L

Task
cancelled

All tasks are
removed from
the tasklist

Figure 5.4: Statechart diagram for Tasklist

As seen in figure [5.4| the task list is instantiated when a task is added to it. The

task list has four event loops: task added, task displayed, task cancelled and task

5.3. Problem Domain 40

completed. All these events can occur while the task list contains a task. The task

list reaches its final state when it is empty.

Task Task Task
defined edited cancelled
Shift started Shift ended
. EE— [Working }-—-» @

(P AT LY,

Employee Employee Problem
unassigned assigned addressed

Figure 5.5: State-chart diagram for Manager

As seen in figure a manager can have an initial state when their shift
starts. Afterwards, they enter the state "Working" which has the following six
event loops: Task defined, Task edited, Task cancelled, Employee unassigned,
Employee assigned and problem addressed. The manager gets to the final state

when their shift ends.

Shift ended

Shift started e ~
. EE— Working EE— @

. J

T Unassigned from task/
completes task
'd ™

Starts new task l

Occupied with task
(. S

Progress Problem

updated reported

Figure 5.6: State-chart diagram for employee

As seen in figure an employee can have an initial state when their shift
starts. After the shift has started they move to the state called working, where
they can enter the state "Occupied with the task" through the event called "Starts
new task". The "Occupied with a task"-state has two event loops called "Progress
updated" and "Problem reported". The employee can get back to the state "Work-

ing" if they are either unassigned, complete their task, or their shift has ended.

5.4. Application Domain 41

5.4 Application Domain

The following section contains an analysis of the application domain for the sys-

tem.

5.4.1 Usage

Task

o

Employee

090006

Manager
Employee

Register

LU

Figure 5.7: Use Cases

This section explains the actors and the use cases they participate in. The actors
will be described using an actor specification and the use cases with a use-case

specification.

The system has two actors: employees, who have tasks in the system that they
must give feedback on, and managers, who use the system to administer the

tasks and employees. Below are the actor specifications for the system.

5.4. Application Domain 42

Employee:

Goal: A person who works at The Living Room as a bartender or cleaner. The
employee needs to be able to work, which includes doing their assigned daily
and weekly tasks and serving customers.

Characteristics: The system has 25 employees who can change the status of tasks

and report potential problems.

Manager:

Goal: A person who works at The Living Room as a manager. The manager’s
primary purpose is to administer the system which includes defining and assign-
ing tasks.

Characteristics: The system has only one manager who can make new tasks.

The eight different use cases are listed below.

Define and assign a task:

The manager can define a new task when on the page displaying the overview
of the tasks. When the “add Task” button is clicked, a popup window appears.
The window contains fields for all the information needed to create a new task.
Some fields are optional. When the form is filled the manager clicks the “Submit”
button, and the new task will be visible in all task overviews for both manager

and employees.

Cancel a task:

Cancelling a task can be initialised by the manager when the task is not relevant
anymore or there are no employees that can do the task. The manager is on the
“Manager” page and presses the task that shall be cancelled. The information
about the task is opened and the manager presses the “Delete” button. The man-
ager is redirected back to the “Manager” page and the task is deleted from the

view and database.

5.4. Application Domain 43

Report problems regarding a task:

An employee can report a problem if a question or unexpected issue concerning
a task occurs or when a task is not completed yet. If the task is not completed, the
employee can add a comment to the task to tell the manager or other employees
why it was not completed. The employee opens the system in the employee view
and then navigates to the task in question. The task overview page is opened and
the employee presses the commentary field. The employee writes the comment
and then presses the button “Comment” to add it to the task. The manager then
receives a notification about a new comment. When the notification is pressed,
the manager is redirected to the given task’s information page. There, the man-
ager can provide a solution, if needed, in the form of an answer to the comment,
in the commentary field beneath the original comment. The comment is saved in
the same manner as for the employee. The manager can also add a comment to

a task by pressing on any given task on the overview page of the application.

Reassign a task:

Reassigning a task (mostly relevant considering tasks with regular occurrence) is
initialised by the manager when an employee cannot complete a task assigned to
them. The manager presses the task needing a reassignment. The task’s informa-
tion is opened and the manager can edit the field “Assignee”. There the manager
finds a certain employee with the relevant abilities. The manager presses the

“Submit” button on the task and is redirected to the “Manager” page.

Monitor a task:

The manager and the employees can monitor the status of the tasks in the differ-
ent overviews/calendars. Daily and weekly overviews are available to everyone
while the all-tasks overview is available exclusively for the manager, which gives

an overview of unresolved, new, upcoming, and pending tasks. When a user

5.4. Application Domain 44

navigates to the “History” tab, the user can see the completed tasks displayed in

a monthly overview.

Change status of task:

The employees and the manager can change the status of a task by marking it as
complete or providing a percentage of completion. When the task is completed
the "active"-property of the clicked task is set to "inactive” and is only visible in

the "History" tab.

Register a user:

Registering a user is only available for the manager and is started when a new
employee is hired. The manager navigates to the “Manage Team” page from the
“Manager Overview” page. Then the manager presses the “Add Team Member”-
button to fill out a form about the new employee. The form consists of the fields:
Name, Role, Phone number, and Email. Next, the manager saves the form and
gets redirected to the “Manage Team” page where the added employee appears

in the list of employees.

Delete a User:

Like registering a user, deleting a user is only available for the manager and
is started when an employee is fired or resigns. The manager navigates to the
“Manage Team” page from the “Manager Overview” page. Then the manager
presses the “Delete Team Member” button to delete the employee. The employee

will disappear from the list of employees and the system’s database.

Actor Table

An actor table of the system can be seen in figure 5.8/ and shows the interactions

between the actors and the system.

5.4. Application Domain 45

Use Cases / Actors Employee Manager

Task Define X

Cancel

Report problem X

Reassign

Monitoring X

Change Status X

User Registering

XK X | X | X | X | X | X

Deleting

Figure 5.8: Actor Table

The employees participate in 3 use cases: reporting a problem, monitoring, and
changing status. Comments are added to a task if the employee reports a prob-
lem. Monitoring happens mostly when the employees complete their current
tasks and start a new one. The employees change the status of tasks if they com-
plete them.

The manager is involved in all of the use cases. Defining a task is done when
a new task occurs and the manager has to define and add it to the system. A
task is cancelled if it is not relevant anymore. The manager is involved in re-
porting a problem because they are the one to provide the solution. Reassigning
an employee is done when the manager wants somebody else to do the task, or
just make it available to everyone. The manager monitors the tasks to get an
overview of which tasks have and have not been done. Changing the status of
a task is done if the manager does not think it is necessary anymore, or if they
have done it themselves. Registering a new user is done when the manager hires

a new employee. Deleting a user happens when an employee resigns or is fired.

5.4. Application Domain 46

5.4.2 Functions

Functions are derived from the use cases described in the previous section. In
the functions table all the functions are shown in the column on the left by
function name. The middle column determines which of the four types of func-
tions, the given function is. The column to the right shows the complexity of each
function. For example, the Create Tusk function is an update function as creating
a new task will change the state of the model. This function is deemed medium
complexity as the function will have to communicate with the database and it

creates a new object [25].

Create Task Update Medium
Edit Task Update Simple
Delete Task Update Medium
Add Comment Update Medium
Delete Comment Update Medium
Edit Comment Update Simple
Display Tasks Read Complex
Create Employee Update Medium
Delete Employee Update Medium
Query Completed Tasks Read Complex

Figure 5.9: Functions Table

The functions vary in complexity from simple to medium to complex. The func-
tions "Edit Task" and "Edit Comment" are of simple complexity because they set a
new value to an already existing object in the program. The other medium func-
tions like "Delete Employee" and "Create Employee" are of medium complexity
for the same reasons as the function "Create Task" mentioned earlier.

Lastly, the complex functions "Display Tasks" and "Query Completed Tasks" are

5.4. Application Domain 47

the only functions, which are read functions. That is because they satisfy the need
for information about the problem domain to the application domain. "Display
Task" shows the tasks in the problem domain to the user which is the application
domain. The same concept applies to "Query Completed Tasks" which looks for
all tasks with the status "active = false" in the database and displays them to the
user. The functions are complex because they read several objects in the Task

class to display the queried tasks in the UL

5.4.3 Interfaces

This section covers the main ideas behind the interface for the system.

The system follows a direct-manipulation pattern due to a few crucial buttons
like completing a task or adding a comment. This makes it easy for the users
to create a mental model of the system, because of the few options the user is
presented with. For navigating between some sections, a menu-selection pattern
is used due to the users not having to navigate around the system’s different
sections that much. When creating a new user or task, the system follows a form
fill-in pattern. This pattern is used as it is the most used pattern for data entry

[25].

Navigation Map

This section contains the navigation map for the system. As seen in the naviga-
tion map figure the system consists of the main page with 3 branches to
follow. Each branch is connected, so for example the manager and the employees
can go back and forth to the history view. The manager view is different from the
other branches as it is password protected. This is done because the manager has
a lot of functionalities that the employees should not be able to use. The manager
can go to the Manage Team page when on the manager view, thus making the

Manage Team view locked behind the password as well.

5.5. Requirements 48

[Home Page]
Employee View Manager View
[(Home Screen)] l (Password Protected) [History View J

Daily { weekly / monthly
breakdown of completed
tasks, or simple
chronological list form

breakdown of upcoming report problem form

breakdown of upcoming
and active tasks Delete button

Ly iinmaliy Edit a task status or
| and active tasks

"Add a task” button
LS A
£

Add a task form

= ; ™)
Daily / weekly / monthly { Edit & task form /

"Manage team" button

—_—
—

"All tasks" button

o

[Manage Team View]

List of existing team
members

*Add team member” | | Add a team member
button | form

"Delete team member"
button

Figure 5.10: Navigation Map

5.5 Requirements

Requirements are concisely formulated criteria that the product, to some ex-
tent, should follow to solve the problem fully (keep in mind that such a prob-
lem can never be fully solved). The following requirements are divided into
functional and non-functional requirements. The functional requirements de-
scribe the functionalities of the system and are sorted according to the MoSCoW-
method that determines the priority of each requirement. The non-functional
requirements describe the qualities of the system and are categorized with the
FURPS+ method. In short, functional requirements describe what the product

should be able to do, and non-functional requirements define how these things

5.5. Requirements 49

should be done. The requirements were generated by brainstorming, using the
information gathered through research, interviews, meetings, and most impor-

tantly the analysis.

Number Description QOrigin Priority

1 Create tasks with the following Interview Must Have
properties and save them in a
database (a task object is a
collection of properties, of which
some may be optional): title,
assignee(s), description, frequency,
deadline, degree of urgency, label,
opting into deletion from database,
opting into receiving a notification

when task is completed.

2 Edit properties of tasks and save Interview Must have
them in the database after creating

them
3 Delete tasks from database Interview Must have
4 Display daily tasks separated into State of the art Must have

two columns, showing active and

upcoming tasks for the day

5 Display a daily, weekly, or monthly Interview Must have
calendar of tasks, separated into
columns for each day

6 Create employees and save them State of the art Must have
in database (employees are objects
with two properties: name and

phone number, personal ID)

7 Edit employee properties in State of the art Must have

database (except personal ID)

Figure 5.11: Functional Requirements part 1

5.5. Requirements

50

Delete employees in the database.

State of the art

Must have

Assign a status to a task (e.g new,

active, completed).

Interview

Must have

10

Different roles have access to
different functionalities (manager
and employee).

Interview

Must have

"

Append a comment to a task (in

case of a problem).

Interview

Should have

12

Sort list of tasks
e Sorted by time
e Sorted by priority/urgency
¢ Sorted by frequency
(monthly/weekly/daily)
¢ Sorted by assignee

State of the art

Could have

13

Display previously completed tasks
in a chronological list-form.

Interview

Could have

14

Display a notification for the
manager when a comment has
been added to a task.

Won't have

Figure 5.12: Functional Requirements part 2

5.5. Requirements

51

Number Description Requirement type

1 An acceptable response time. Performance

2 Easy to navigate, and (primarily for employees), Usability
easy to use in a busy work environment.

3 The system must be available at all times - not just | Reliability
during opening hours.

4 Must be responsive to a screen’s aspect ratio and Usability
size - user experience should not be affected by
changing screen type (landscape-oriented).

5 Must be compatible with different types of operating | Supportability
systems.

6 A login/logout option. Functionality

7 The data of the system should be stored using a Functionality
secure cloud-based database.

8 Navigation of the system should easily create a Usability
mental model.

9 User interface needs to be intuitive and Usability
comprehensible for both roles.

10 The system's account creation must require Functionality
username, password, email and phone number.

11 The system must update when new tasks or other Functionality
events happen automatically.

12 A progress bar showing the progress for the current | Functionality
day

Figure 5.13: Non-functional Requirements

5.6. Final iteration of the problem statement 52

Disclaimer: See section for a revision/re-evaluation of which requirements are sat-

isfied by the product.

5.6 Final iteration of the problem statement

Providing an application for small businesses with busy work environments (e.g.
The Living Room), how can the group contribute to achieving an improved
overview of everyday task management and administration? More specifically,
how can a software solution help in the documentation and communication of
daily/frequent tasks, as well as the reduction of forgotten assignments and con-
fusion regarding personal responsibilities? To validate the provided solution’s
degree of success, assess whether the staff of The Living Room would consider
the application suitable for everyday use, and be a superior alternative in com-

parison to currently applied solutions.

Chapter 6

Product

6.1 Description of the application

The product of this project is a software solution, whose primary purpose is
the assistance of administration of daily routines and weekly /monthly repeating
tasks at The Living Room, or, arguably, any cafe or bar with a similar manage-

ment structure.

In short, the software provides a platform, with which the manager of the cafe
and the employees interact in a parallel fashion. The manager can create tasks
with properties such as assignees, frequency, urgency, deadline, etc. If any unex-
pected issue occurs, they can also communicate with employees using the com-
ment section of each task. In case a task needs changes, or an employee’s per-
sonal information needs to be updated, both can be edited by the manager. As
for logging and tracing previous tasks back, a history view is available for both
managers and employees, containing a chronological list of all archived tasks
broken down into months. The employee view provides a similar but simplified
overview of daily tasks, with efficiency and simplicity being the main focus. Em-

ployees can mark progress and completion of a task and if a potential issue or

53

6.1. Description of the application 54

misunderstanding occurs, they are able to directly contact the manager through
the comment section. All in all, the solution provides a clean and uniform way
of keeping track of, managing, and planning tasks for both the manager and the

whole team.

The software solution is a high-fidelity prototype of a dynamic multi-platform
application programmed in Java. The product functions as a desktop application,
whose aspect ratio and relative resolution (1024 * 768) matches a 10th-generation
IPad - the device on which the real product would run (see previous observa-
tions). The product has a user interface designed to suit the busy work environ-
ment of The Living Room, and with a landscape-orientation preference. The two
types of users of the product are the manager and employees. The previously
gained fundamental understanding of the contexts in which these actors would
use the program, as well as their demands, were also crucial in the planning and

design of the user experience.

In the following paragraphs, the different "views" of the program and its con-
tents are clarified as well as what a "task" exactly covers in the context of the

product.

The manager’s view is best described as the "control centre" of the program.
It is in this view that all information regarding employees and tasks is defined,
managed, and edited. During early testing, it was made clear that a manager is
not under the same pressure, nor requires the same gentle learning curve, as an
employee does. Instead, they would much rather work with a more complex user
interface, and be able to control as many aspects of their experience as possible.
Therefore, filters, a calendar system for easier date selection and planning, and a

non-date-restricted display of all tasks are features worth considering.

6.1. Description of the application 55

The employee view is used by the employees at work, not currently occupied
with serving customers. The demands for this view were vastly different. For in-
stance, efficiency, colour association, and instant pattern recognition were higher
priorities. Employees also work considerably fewer functions since the system
for them should simply be used to communicate tasks and potential problems

and report progress and completion.

As previously mentioned, the history view is accessible to both employees and
managers and includes all archived (marked as completed) tasks and their prop-
erties. To avoid any confusion, all tasks are sorted chronologically based on their

respective deadlines.

"Tasks" in the context of the program represent a collection of properties describ-
ing an issue or assignment, which either bartenders or cleaners of The Living
Room are responsible to tackle. The mandatory fields are a title, assignee (a task
can also be assigned generally to the entire staff) and frequency. The optional
fields are the description, date, degree of urgency, and role. Every optional task
has a default value, which was mainly determined during tests and consultation
with the client. Furthermore, the tasks have non-user-defined properties such
as timestamps for the last edit made to a task and its status, which is used for

determining if a task is active or not.

6.1.1 Revision of Requirements

This section contains the implemented requirements for the final product and is
shown in table and Some of the requirements from chapter [5.5 have
been modified to make them clearer for the context of the system. An example
could be requirement number 4: "Display daily tasks separated into two columns,
showing active and upcoming tasks for the day". This requirement is changed to:

"Display daily tasks and tasks that are overdue.".

6.1. Description of the application

56

Number

Description

Origin

Priority

Create tasks with the following
properties and save themin a
database (a task object is a collection
of properties, of which some may be

optional): title, assignee(s), description,

frequency, deadline, degree of
urgency, role, opting into deletion from

database.

Interview

Must Have

Edit properties of tasks and update

them in the database.

Interview

Must have

Delete tasks from the database.

Interview

Must have

Display daily tasks and tasks that are

overdue.

Test

Must have

Create a user with the following

attributes: first name, last name, email,

phone number, admin, and role.

Interview

Must have

Delete users from the database.

State of the art

Must have

Update users in the database.

State of the art

Must have

Set a task’s status to inactive in the
database for both employees and

managers.

State of the art

Must have

Must have two different views

according to the users' admin attribute.

If the user is an admin, they will see

the manager page, and if they are not

Interview

Must have

Figure 6.1: The implemented functional requirements for the system part 1.

6.1. Description of the application

57

an admin they will see the employee
page.
10 The user should provide a PIN code to | Interview Should have
get to the manager page.
11 See information about a task when State of the art Should have
clicking the information button.
12 See information about a user when State of the art Should have
clicking the information button
13 Add a comment to a task. Interview Should have
14 Display all tasks in the system, both Test Should have
active and inactive.
15 Sort list of tasks Interview Could have
e Sorted by time
=« Sorted by priority/urgency
« Sorted by frequency
(monthly/weekly/daily)
Sorted by assignee
16 Display previously completed tasks in a | Interview Could have
chronological list-form.
17 Go back and forth between the Test Could have
different days in the overview for both
employees and managers.
18 Display daily tasks separated into two | State of the art Won't have
columns, showing active and upcoming
tasks for the day
19 Display a daily, weekly, or maonthly Interview / State of the | Won't have
calendar of tasks, separated into art
columns for each day

Figure 6.2: The implemented functional requirements for the system part 2.

6.1. Description of the application

58

Number

Description

Origin

Requirement

type

Easy to navigate, and (primarily for
employees), easy to use in a busy
work environment.

Siate of the art

Usability

The system must be available at all

times - not just during opening hours.

Interview

Reliability

Must be responsive to a screen’s
aspect ratio and size - user
experience should not be affected by
changing screen type
(landscape-oriented).

Interview

Usability

Must be compatible with different

types of operating systems.

Interview

Supportability

The data of the system should be
stored using a secure cloud-based

database.

Interview

Functionality

Navigation of the system should

easily create a mental model.

State of the art

Usability

User interface needs to be intuitive

and comprehensible for both roles.

State of the art

Usability

The system's account creation must
require a username, password, email

and phone number.

Test

Functionality

A progress bar showing the progress
for the current day

Test

Functionality

Figure 6.3: The implemented non-functional requirements for the system.

Chapter 7

Design

7.1 System design

In order to create a well-structured application it is important to choose the right
design pattern and build the project in a way, in which components such as Ul
frameworks and databases are kept separate enough, that they are proven to
be interchangeable with relative ease. For instance, implementing new CRUD
operations, in case it is required to shift to a SQL database, or switch to a web-

based UI, should not mean critical changes with regard to the entire code base.

7.2 Design concerns

This section contains the different design concerns which were taken into consid-
eration when creating the system.
7.2.1 Criteria

This subsection contains a table with some classical criteria and how they were
prioritised for designing the system [25]]. The description of each criterion can be

seen in appendix H.

59

7.2. Design concerns

60

Criterion

Very important

Important

Less important

Irrelevant

Easily fulfilled

Usable

X

Secure X

Efficient X

Correct X

Reliable X

Maintainable X

Testable X

Flexible X

Comprehensible | x

Reusable X

Portable X

Interoperable X

Figure 7.1: Criteria for the system

As seen in figure four criteria in total were deemed irrelevant. This is due
to this system only needing to apply to one specific cafe and does not handle any
sensitive personal information. The "Portable” and "Interoperable" criteria are
also irrelevant as a result of the system not being deployed nor communicating
with other systems besides MongoDB services. The "Reliable" criterion is priori-
tised as less important as a result of the system not having any computational
functions. "Correct" and "Testable" were prioritised as important because we cre-
ated the system specific for The Living Room, and it should fulfil as many of the
client’s demands as possible. By choosing to create the system using an object-
oriented approach together with the MVC model, "Maintainable" and "Reusable"
were also deemed important. The "Testable" criterion is important, as the system
should always do what the user intends to do. The "Usable" criterion is very

important because of the environment at The Living Room e.g., noise, time pres-

7.2. Design concerns 61

sure and handling customers. The system should therefore respond and update
as quickly as possible to not delay the employees. Lastly, comprehensibility is
deemed very important as well because the environment at The Living Room is

noisy and stressful at times.

7.2.2 Database Study

Since the system will be used both at The Living Room by its staff and by
the manager wherever he or she is, the database must be available from any-
where. When searching for a suitable database MongoDB, Microsoft Azure SQL
Database and Firebase were matching the needs of the system. Microsoft Azure
SQL Database was quickly turned down as it costs money to use [26]. Firebase
is a database used and developed by google and is mostly for handling a large
amount of data. Since our system is not going to use that much data, Firebase
was also turned down [18]. This left us with MongoDB as the optional database
to use for this system. MongoDB is a document-oriented NoSQL database. It
uses JSON-like documents with optional schemas [28]. The method of storing
data is almost like using objects in Java which is also a reason for choosing Mon-
goDB, as models for the system look a lot like the stored data. This was also

chosen due to the criterion "efficient", which was deemed very important.

7.2.3 GUI Framework Study

The graphical user interface framework chosen for this project was JavaFX. The
main reasons behind the selection were the fairly gentle learning curve, sim-
ple syntax and thorough documentation, the Oracle Scene-Builder tool support,
TestFX test suite, large selection of third-party libraries, and good applicability
for desktop applications [40]. Generally, JavaFX was expected to provide a lot of

shortcuts, reducing the time consumption of front-end work.

Other potential alternatives, such as AWT [31], Swing [32], SwingX [22], and

7.3. Architecture 62

JGoodies [21] were explored, but were proven to be largely outdated, and would
have required a much larger partition of the project duration to collectively learn
and implement. These solutions are also purely code-based (no FXML or HTML

support) with no currently available layout-planner tool such as Scene-Builder.

7.3 Architecture

The following section covers the architectural design of the system and includes

the component design and an architecture diagram.

7.3.1 Component design

This subsection contains the final iteration of the component design of the system,
which highly resembles the earlier presented class diagram. The reason behind
this is the use of an iterative development cycle during the making of this system.
Each class diagram was revised numerous times in order to make it as precise
as possible. Therefore, the component design for the system is the class diagram
with attributes and methods assigned to the different components/classes. An-
other element added to the component design is the specification of some of the
attributes such as frequency and urgency. This was done due to the attributes

being constants. The specifications are added in the yellow boxes in figure

7.3. Architecture

Cafe

Task

- title

- nams
- parsonnel

1 <> Extends

once, daily, every
other day, weekly,
monthly

- description

0.* |-dueDate

- lastEdited

--- |- frequency

- urgency ----=======
- progress

- role

- comments

- assigness

63

Tasklist

- tasks

low, medium, high

[

1.*

Person

- firstName
- lasttame

all, cleaner, bartender ------~

- phone

1.* |-email

+ completeTask()
+ appendComment()

1

|

Employee

+ reporiProblem()

|

Manager
- pinCode

+ createTask()

+ edifTask()

+ edifEmployee()
+ sendAlert()

Figure 7.2: Component design

7.3.2 Architecture diagram

+ displayTasks()
+ filterTasks()

As seen in figure [7.3]the system uses both a client-server and layered pattern. The

client-server pattern is shown by the link between the client and server through

the model and database system components. The direct link between the model

and database system is discussed in section The client-server pattern was

used because the manager must be able to use the system from any place as long

as their device is connected to the internet. The reason for The Living Room not

owning a local server is that it would cost much more compared to a cloud-based

server and would propose a new set of risks. The layered pattern can be seen in

the client component because the three components are divided into three layers:

7.4. Ul design 64

user interface, functions and model. This was done to keep the components
loosely coupled and to make the system as cohesive as possible. Another reason
for the system to follow the layered pattern is that the criterions "maintainable"

and "reusable”, which were deemed important.

==Component=:=
Client

2]

==Component== @
User Interface

F 3

h

==Component== {l
Functions

Y <<Component=>
Database Server

h E

==Component=:= {l o =< AP|= » ==Component=:> @
Model - MongoDB API - Database System

Figure 7.3: Architecture for the system

7.4 Ul design

When developing a software solution that will compete with other applications
on the market, it is important to create “an attractive and efficient user interface
(UI) that optimizes the user experience (UX)"[38] since the quality of the UI and
UX will distinguish solutions from one another. A good user interface is charac-
terised by its ability to make the user’s interaction with a program as effective as
possible while also making the user’s experience easy and intuitive. The user’s
expectations are also an important aspect to consider and a Ul that meets these
expectations is arguably what makes it a great one [38]]. This chapter will describe

the UI design of this project and how it was created.

7.4. Ul design 65

7.4.1 Sources of inspiration

Building upon a user’s knowledge of other systems, digital design conventions,
and general habits is an important action to consider when designing a new user
interface. The point of the project is not to invent new design conventions, but
to adapt those that work. Therefore, other than looking at competitors and their
designs, other relevant applications, with which the target group of the project
ought to be familiar, were taken into consideration during the design of the prod-

uct.

As for how the task lists themselves look, a great deal of inspiration was taken
from both competitors explored in the state-of-the-art section, as well as The
Living Room’s already existing physical solutions and spreadsheets. The idea
behind this was that implementing a new system similar to the one already im-
plemented would result in a smoother transition period from the previous to the

new system.

For navigating through dates, Google Calendar’s system, seen in figure was
a point of inspiration, to which especially the final product bears a notable re-

semblance.

7.4. Ul design 66

= I:'; Calendar Today < 2 December 2022
MON TU THU
|- Create -~ L . * o’ oot
December 2022 < »
M T s
f] 1 3
4 5 & ? B 9 10 4 & 7 :
n 12 13 14 18 16 17
18 0 20 ;o2 o2 oM
25 26 2 2 29 30 3
1 12 13 14 1

=), Search for peaple
Figure 7.4: Google Calendar

To mark urgency (low, medium, high) and a task being overdue (today’s date
is later than the deadline), Microsoft Outlook’s "high importance" exclamation
mark icon, seen in figure [7.5/and Apple IOS colour labels, figure [7.6] (often used

to mark urgency) were inspiring factors.

Christina INIEINIIIIIE . !
Vigtigt, made med [N - :v2uering af ¢ 12/5/2022
Hej SW3 studerende [N

Figure 7.5: Microsoft Outlook high-importance exclamation mark

Name ~ Date Modified

B Clean.Code.A.H...raftsmanship.pdf 26 Aug 2022 at 14.11
B Design_Pattern...ted_Software.pdf 25 Oct 2022 at 09.56

B designing user experience.pdf 26 Aug 2022 at 14.07
B Essential C 8.0.pdf 26 Aug 2022 at 14.08

Figure 7.6: 10S colour labels

For the login screen, Netflix’s profile selection screen was used as a guiding

7.4. Ul design 67

principle as seen in figure

Who's watching?

Figure 7.7: Netflix profile selection screen

7.4.2 The original Ul idea

The UI design was originally planned out by creating wireframes in the applica-
tion Balsamiq Wireframes [3]]. Before creating the wireframes, potential elements
of the Ul, and the placement thereof, were discussed, listed and drawn. From
that, the wireframes were used to create a mock Ul making it easier for the de-
velopers to picture what the application could look like. The picture below shows

the first idea for the UI of the manager view before the wireframes were created.

7.4. Ul design 68

Figure 7.8: Original Ul idea

The essential elements here are the navigation, the calendar view, the task overview
and the "add task"-button seen in the bottom right corner. The original idea was
that the manager should be able to see the tasks for the current day, divided into
tasks in progress (active) and tasks yet to be completed (upcoming), for a week
at a time and for a month at a time. In these different views, the manager should
be able to create tasks and edit/delete tasks. The navigation button seen in the
top right corner of the picture is a dropdown button, which makes it possible for
the user to navigate between a manager view, an employee view and a history

view.

7.4.3 The wireframes

During the process of designing the UI, multiple wireframe iterations were made.
The first wireframe iteration was an evolved version of what the picture above
shows. Other than the manager view, the first wireframe iteration also included
an employee view and a history view with lo-fi interactivity to showcase the
proposed interactivity of the buttons and functions. The picture below, figure

shows the manager’s view from the first wireframe iteration. The employee

7.4. Ul design 69

view is very similar to the manager view with the exception that it has fewer

functionalities.

QXD) €)
Today's tasks (@)

Today's tasks ,] Weekly tasks | Monthlytasksl] 07/10/22]

Active Pending

Task |] Task |

Figure 7.9: Original manager view

Since the scope of the project is narrowed down to tackling issues regarding task
management, and the overview of tasks in The Living Room’s current solution
is not optimal, a better overview of tasks was prioritised. The idea with today’s
tasks, as seen in the picture was to create two states of tasks to make it easier
for the employees to distinguish between tasks that are already being worked on
and tasks that have not been started yet. In this example, when a task is created,
it is automatically stored as a pending task. The task can be activated by clicking
on it and an active task can also be moved back to pending by the manager.
The following picture, figure shows what happens when a pending task is
clicked.

7.4. Ul design 70

QD X) @ D)

@ Task

LU

(o] (o]

+ Task

Figure 7.10: The manager view when a pending task is clicked

The idea is to show the information about the task while also providing options
for the manager. In this view in figure the manager can edit the task infor-
mation and submit those changes, activate the task, delete the task and go back
to the manager view (cancel). The colours of the buttons were chosen based on
the state of the art and what a potential user could expect. The colour red is usu-
ally used for buttons that terminate or delete something while the colour green is
used for buttons that accept or complete something. The colours black and blue
were chosen to distinguish the "Cancel"-button and the "Activate"-button from

the others.

As mentioned previously the first wireframe iteration also includes a history
view. As an employee, you can click a task and get the option to mark it as
completed. When the task is marked as completed, it will be visible in the his-
tory view under the date on which it is assigned. The picture below, figure

shows the history view.

7.4. Ul design 71

laln® FAN) @)

History

[« D
Completed tasks

Mondey October 3rd 2022
Tuesday October 4th 2022
‘Wednesday October Sth 2022

Thursday Ostober Gth 2022
Friday Ccotober 7th 2022 i

Task J

Saturdoy Cctober Bth 2022
Sunday Ootobar 9th 2022

Figure 7.11: The history view

The history view shows a weekly overview of completed tasks. The idea of the
history view, besides providing a way to keep track of completed tasks, is to give
the user the option to re-activate tasks. For instance, if an employee accidentally
marks a task as completed, it should be an option to undo that action and return

the task to the "Today’s tasks" view.

The second wireframe iteration is similar to the first one but has additional
frames and functionality. This version contains a login function where the user
can choose whether they’re logging in as a manager or an employee. The pro-
gram is not meant to be specific for each employee but is a commonly used

platform. The picture below, figure shows the login page.

7.4. Ul design 72

Ao X) €O

Figure 7.12: The login page with access to the employee view and the manager view

The first and second wireframe iterations make the first iteration of the UI de-
sign and represent the first suggestion for how the program could look. When
the second wireframe iteration was finished, a meeting with the client was set
up to conduct an exploratory test and to get feedback from the manager (TI).
After the meeting, a considerable amount of changes had been discussed. The
biggest change was for the way tasks are displayed and how the user can access
their information and the functionality of the program. Thus, the third and last
wireframe was an updated version of the first wireframe where suggestions from
the manager had been taken into consideration. The following will describe the

third wireframe and the new changes suggested.

7.4. Ul design 73

QDX) @)
[Foday's taska | @0©

©L To | Q@@ =T
©@LC | @QO®® =T
® | @@ @ @ =i T

I Toady's progress: I

114

Figure 7.13: Manager’s today’s tasks view from final wireframe

The picture above, figure shows the updated version of the manager’s "to-
day’s tasks" view. The most noticeable difference is the display of tasks and the
number of actions available in this view. The manager made it clear, that he
would want the functionality to take as few clicks as possible so as to make it
more efficient. Therefore, instead of having to click on the task to access its op-
tions, the options are now openly placed on either side of the task. The task itself
is now also a progress bar, which can be set by using the "%"-button. Other than
updating the progress bar, the buttons also make it possible for the user to delete
the task, complete the task, see task information, add a comment to the task and
assign employees to the task. The wireframe was also updated to show a general
progress bar for the completed tasks of the day. Furthermore, the navigation bar
from the last wireframes used to navigate between the displays of tasks (daily,
weekly, monthly) has been changed to a dropdown menu, which takes up less

space.

7.4. Ul design 74

As mentioned earlier, the manager view is password protected, because the man-
ager has access to private information about the employees. Therefore, if some-
one were to try to access the manager view from the employee view (or history
view, which is accessible to both managers and employees), the program should
prompt for a password. This functionality is added in the last wireframe and an

example of this can be seen in the picture below [7.14,

Figure 7.14: The login prompt from trying to access the manager view

7.4.4 The final look

The wireframes were used as a stencil for the program, thus the program’s inter-
face was modelled after these as accurately as possible. The following pictures

show the final look of the program.

7.4. Ul design 75

LogIn

@
— =
- A A —
Manager Employee History

Figure 7.15: The login page

The final login page differs from the last wireframe in that it has an added button
which gives access to the history view. The history view access was added to the
login page as a shortcut since both managers and employees could find it useful

to be able to access the history view directly.

Today . Sk famk Al Tacskn Maringn Tram Fonfrmaby View = Y
Elenn thi mstroom =) B0 Assiy >
Foad preperatior o Prograss & Assignees
O Progress & goe:
a Progress % A -
Chack storag O Progress 4 Assig -

Figure 7.16: The manager view

The task display in the final manager view has been programmed to match

7.4. Ul design 76

the task functionalities displayed in the wireframes more or less completely.
The trashcan buttons and their functionality, however, have been replaced with
coloured dots. The dots are meant to represent the urgency of each task. Fur-
thermore, the view has gotten an extended set of functionalities with buttons that
make it possible for the user to move between displays of tasks according to dif-
ferent days, add a task, access all tasks, Manage Team, refresh, navigate between
views and filter by specific categories. Some of these are new and some of them

are the same as the last wireframe.

Dec 2022

anzraoze [JRGG | Fooo preparation alats

1522022 ([RREERER Watsr the plants [Daiate

w/z/202; [(ResoweR | Ciean the fidge “Tiiata

wizvzozz (RGN | Chockstorage ‘Delets

a/12/2022 [Hgaver| | Open the store Dolnt

Figure 7.17: The history view

The final history view is very different from the wireframes since it was decided
that this similar way of displaying the tasks (as in the task view) was more man-
ageable. The continuity between the scenes also makes it easier for the user to

navigate the program.

The wireframes have been very useful tools when creating the UI, but it has
also been relevant to apply digital design theory; some of which are presented in

the following sections.

7.4. Ul design 77

Gestalt laws of perception When designing Ul, the Gestalt principles of design
are useful tools to help improve aesthetics, functionality and user-friendliness.

Six of these Gestalt principles, or laws, er listed here[8]:

® Proximity

Continuity

Part-whole relationships

Figure/ground

Similarity

Closure

The laws that have been applied in this program are mainly similarity and prox-
imity. The similarity is seen in the task view for both managers and employees
and in the history view. The tasks in the task view are displayed similarly to cre-
ate a recognizable cluster of tasks. The same can be said for the completed tasks
in the history view. The law of similarity can, arguably, also be applied to buttons
with the same colour. Proximity can also be seen in the before-mentioned views
since all the information and options for each task are closely lined up. Thus,

distinguishing each task from one another.

WIMP(Windows, Icons, Menus, Pointers)

Windows: The application created in this project runs in a single window, and
only changes scenes when navigational buttons are clicked.

Icons: The icons used in this application are primarily seen as buttons. The first
icons encountered are the three view-option buttons on the login page. The but-
tons have labels as a further clarification of the icons, which, respectively, try to
depict the idea of a manager, employees and a history feature. All three icons

would be categorized as metaphor icons since they are not direct images, but

7.4. Ul design 78

more of an interpretation of the labels. Icons are also found as buttons on the
task page. The icons here would all be categorized as convention icons since they
are known from application to application as representing a specific feature. The
icons in question are the checkmark, the speech bubble, the "i", the filter button,
and the exit button.

Menus: The application does not contain a lot of menus, but the ones that are
present are contextual menus in the form of dropdown menus.

Pointers: Since the application is a desktop computer application, the pointer
used for functionality will be a computer mouse, however, the pointer will re-
main static when hovering over clickable elements. If the application was up-

graded to work on a tablet, the pointer would be the finger of the user [5].

Affordance Affordance is a term which refers to possible actions that can be
performed on an object [1]. In this application, affordance and perceived affor-
dance is seen in the manager and employee task view. The dropdown menu
buttons afford to show its options if clicked, while a perceived affordance is
found in the arrows next to the date, which afford showing the next or previous
date if clicked. Affordance can also be seen in the way the opacity of the buttons

changes when the pointer is hovering over them, affording the user to click them.

Colours Another rather important aspect of the design is UI colours. The tone
and choice of colours can have a great impact on how an interface is perceived.
The main colours of the application are grey, white and blue which, in western
colour conventions, are colours of neutrality. The neutral colours were chosen
since the program should not take unnecessary focus from employees working
in the bar. Other colours used in the application are red and green for various
buttons. As mentioned earlier the red and green colours have been chosen due to
commonly known applications and expectations of their symbolism. The buttons

in question are cancel buttons, exit buttons, and delete buttons, which are red,

7.4. Ul design 79

and OK buttons, recover buttons and submit buttons, which are green. As previ-
ously stated, the coloured dots next to the tasks indicate the urgency of each task.
The dots are coloured according to the level of urgency. If the level of urgency is
low, the dot is green, if the level of urgency is medium, the dot is yellow and if
the level of urgency is high, the dot is red. These colours are commonly known in
western colour conventions too, respectively, display danger (red), caution (yel-

low), and safety (green), which fits the essence of these levels of urgency [24].

Heuristics The User Advocate Jakob Nielsen's revised heuristics is a list of us-

ability heuristics for UI design some of which are [29]:
¢ Visibility of system status
¢ Match between system and the real world
¢ User control and freedom
¢ Consistency and standards
¢ Error prevention
* Recognition rather than recall
¢ Flexibility and efficiency of use

Heuristics that can be applied to this application are the following:

User control and freedom: The user can, at any given moment, exit the program
or cancel a process (go back) by clicking on the visible, red buttons. The user
also has the option to undo certain actions. For instance, when completing a
task, the task can be recovered from the history view.

Consistency and standards: The application applies knowledge of already existing
UI designs to make it intuitive for the user to locate expected options. For in-

stance, an exit button is usually located in an upper corner of an application.

7.4. Ul design 80

Error prevention: When the manager tries to create a task or a user, they can not
submit the form unless all mandatory fields are filled out. The recover feature
also falls under this category since the user mistakenly can complete a task, but
also undo this action.

Recognition rather than recall: The application uses recognition with button labels
and consistent scene designs. The button labels help the user recognise what
they do or where they lead to. The consistent scene designs make it easier for the
user to navigate the program since they do not have to re-learn how to navigate
the scenes every time a new one is displayed.

Flexibility and efficiency of use: When the application is run on a computer it al-
lows some keyboard shortcuts, such as the enter- and escape buttons, to add

flexibility.

Chapter 8

Implementation

In this chapter, the implementation of the prototype is covered. The implemen-
tation of patterns is going to be explained and they will be shown in the code

examples with snapshots of the GUI.

81 MVC

Implementing a consistent design pattern ensures the structural segmentation of
the code and other miscellaneous files and packages. In this project, a model-
view-controller (referred to by the abbreviation MVC) is used. This design pat-
tern was selected because of its good separation of concerns and scalability. Ad-
ditionally, the product highly resembles a web application, and MVC is widely
applicable [40]. This means that a situation in which the entire project requires
restructuring is improbable. The group’s familiarity with this structure was also
worth taking into consideration, since learning a new structure could consume

lots of resources.

Briefly, the MVC pattern breaks down code into 3 compartments (all definitions

belong to the source [19]):

81

8.1. MVC 82

® The backend that contains all the data logic.
* The frontend or graphical user interface (GUI)
® The brains of the application that controls how data is displayed

In MVC, each component has its own responsibility. The model can send and
receive data from the view while the controller receives data from the view and
sends it to the model like in figure 8.1] The use of MVC separates the code base
into sub-parts, making it more transparent to figure out the origin of the bugs
while aiding the readability of the code. It also makes the product more scalable

since there is structure to its multiple levels.

MVC Architecture Pattern

pulls data via getters pulls data via getters

Controller
Brain modifies

controls and decides
how data is displayed

Grmmmmm e

View Model
ul Data
Represents current Data Logic
model state

updates data sets data
via setters and via setters
event handlers

Figure 8.1: MVC Architecture Pattern

8.2. Code examples 83

8.2 Code examples

In this section, specific code examples are used to demonstrate the implementa-
tion of requirements into functional code. Please note that previously discussed
event tables, class diagrams, brainstorming, and pseudocode have all provided

assistance in planning and constructing the logic.

8.2.1 Database methods

In the program’s separation of concerns, detaching the database-related methods
from the rest of the program’s logic was a decision made early on in the design
phase. The DatabaseMethods interface is responsible for establishing a connec-
tion to the database, importing and exporting tasks and users (with the help of

models) and generally all CRUD (create, read, update, delete) operations.

checkConnection()

The checkConnection() method is a relatively simple method, figure in which
a try-catch statement encapsulates an attempt to create a Mongo Client using a
method provided by the MongoDB Query API. This method is implemented
in other database-related methods since issues with the connection should be

accounted for before initiating any other operations.

8.2. Code examples 84

checkConnection(){

(MongoClient = MongoClients.create(

System. .println()

(Exception e) {

System. .printin(

Figure 8.2: checkConnection method

getTasksFromDB()

The getTasksFromDB method, seen in figure returns an ArrayList containing
either all active or all inactive tasks from a specific collection depending on the
arguments passed. Following an assertion in line 64, a for-each loop iterates
through all documents of the provided collection, finds all active/inactive tasks,
sorts them based on date, and adds them to the locally stored ArrayList with the
help of the createTaskToDisplay() method. The createTaskToDisplay() method
acts as a translator from MongoDB database values to model values, so task
objects can be created with the values stored in the cloud. At last, the function

returns the ArrayList tasklist.

8.2. Code examples 85

Figure 8.3: getTasksFromDB method

completeTask()

The method completeTask(), seen in figure handles the process of complet-
ing a task by updating the attribute "active" from true to false, or false to true,
depending on the context. It has three parameters: String ID, which is the ID of
the task fetched from the database, String collName, which is the collection name
to fetch the task from the database, and boolean setActive, which indicates if the
task is active. The objectID created on line 150 converts the given ID from the pa-
rameters to an ObjectID type, which can not be done before calling the function.
Line 151 then uses another function from the interface to get the actual collec-
tion and store it in the collection variable. Lines 154 and 155 make it possible to
convert the variable "now" to the specified date format on line 154. This makes
it possible to change and search via the date attribute in the database. Line 157
gets the task with the ID from the database and the function getTaskFromDB()
is a function from the DatabaseMethods interface. The if-statement starting on
line 159 handles the "frequency" attribute and it manages how the task is up-
dated in the database. If setActive is true, the task attribute "active" is simply

set to true. The function updateOne() is from MongoDB’s APIL The value of the

8.2. Code examples 86

attribute "frequency" for the task is handled in the function changeDateAndUp-
dateInDB(). If, for example, the "frequency"” value of the task is monthly, the date
of the task is set one month forward instead of changing the "active" attribute.

Lastly, on lines 165-166 the task’s attribute "lastEdit" is changed to the current

day and time when the completeTask() function is called.

Figure 8.4: completeTask method

8.2.2 UI methods

The following section explains the main functions used in the user interface layer.

switchScene()

The function switchScene(), seen in figure switches the scene displayed in the
application with a new scene based on the path given. The function takes two
input parameters: BorderPane pane and String path. The BorderPane pane is the
current JavaFX BorderPane which the function is called from. For example, if the
function is called from the login screen with loginBorderPane as its BorderPane,
the loginBorderPane variable will be the BorderPane parameter used in the func-

tion. The String path is the .fxml file which is loaded and switched to.

8.2. Code examples 87

The function is one big exception statement and catches an input-output ex-
ception if anything goes wrong on lines 40 and 41. The code on line 40 creates
a brand new BorderPane from the .fxml file taken as a parameter. On line 41,
the BorderPane taken as a parameter loads all its children/components and sets
them to the new BorderPane created on line 40. If an exception was caught, the

application will throw an exception instead of crashing.

d switchScene(BorderPane pane, String path) {

e = FXMLLo .lood(getClass() .getResource(path))

etAll(borderPane) ;

Figure 8.5: switchScene method

displayComments()

This function, displayed in is called when the user is either viewing the de-
scription of a task or tries to comment on a task. The function displays comments
made under that specific task. A string array list is created, which stores the
comments from the given task by using the function getCommentsFromDB from
DatabaseMethods. The next step is to populate the page with comments, which
is done with the exception of the try-catch. The code within the try statement
tries to load FXML files and populate them with comments while also check-
ing for errors, and if any errors happen the catch statement signals that an I/O

exception of some sort has occurred.

8.2. Code examples 88

Figure 8.6: Display comments method

populateManageTeamViewWithUserBoxes()

This method first calls the DatabaseMethod getEmployeesFromDB(), seen in fig-
ure (8.7, to fetch all employees from the database. Subsequently, it iterates through
each user and creates an "employee-box-page.fxml" element on the user interface.
Handling task elements as widgets that can be added to the page helps with the
dynamicity and re-usability of code and is also used for displaying and interact-
ing with tasks. The method sets the ID of the vertical box element containing the
displayed user’s information to the user’s ID. This is done on line 52. On line
54 a new UserBoxController is created so one of its methods can be called on
Line 55. The method setUserBoxToUI() simply sets the different fields and labels
corresponding to the user in a vertical box. The vertical box is then added to the
grid and the "rows" variable is incremented by one so that the next potential box
can be added underneath. If any input-output exception is caught during this

iteration through the users, it will be caught and displayed in the console.

8.2. Code examples 89

Figure 8.7: Populate manage team with user boxes method

Chapter 9

Quality Assurance

Quality assurance (QA) is defined as "any systematic process of determining
whether a product or service meets specified requirements." [17]. The group has
gone through several methods within QA throughout the product’s life-cycle: a
usability test which includes an exploratory test, an assessment test, a validation
test and a think-aloud test, and unit testing to assure the product meets the

requirements.

9.1 Usability Test

The purpose of the usability test is to identify problems concerning the system.
It created a starting point for the refinements of the design during the product
life-cycle [34]. This resulted in a ranked list of the problems and comprehension

of the elements that work well in the system.

9.1.1 Exploratory Test

This test’s main purpose is to examine the effectiveness of the product’s pre-
liminary design concepts [34]. The test was conducted after the specification of

requirements and preliminary design was completed. The test was based on the

90

9.1. Usability Test 91

wireframes displayed in section which consisted of the fundamental ele-
ments of the interface. To collect feedback on the product and see if the Ul meet
the client’s expectations, the client was chosen as the participant for the test. The

main points from the feedback were:
¢ Fewer clicks for changing status and assigning tasks
* Notifications are not first priority
¢ Inline buttons of the task in a row
¢ The use of progress bars for the tasks

All the notes from the exploratory test can be seen in appendix G.

9.1.2 Assessment Test

The assessment test is still in the "Prototyping, Design and Testing"-phase in the
product’s life-cycle like the exploratory test [34]. The test was conducted after
the "Detailed Design"-phase was completed. The test builds upon the findings
of the exploratory test by evaluating the usability of the product. This is done
by getting a user, the client, to perform various tasks. After the tasks had been

performed, the main takeaways were:
¢ The types of a tasks are cleaner and bartender
* The screen size of what the UI should fit

* The overdue tasks should be placed at the top of the list of tasks with a

warning next to it

¢ Implementing a feature to filter tasks by date, assignees, urgency, frequency

and type

¢ Logging the timestamp when editing, progressing and completing a task

9.1. Usability Test 92

9.1.3 Validation Test

To assure that the UI of the product is user-friendly, a usability test, in the form of
a validation test, was conducted in cooperation with staff members of The Living
Room and 4 students from Aalborg University Copenhagen. The test was con-
ducted in the "Final Testing and Product Launch"-phase of the product life-cycle
and after the "Product Build"-phase [34].

The purpose of the test was to identify any problems in the system that were
related to usability. When planning a usability test, it is important to keep in
mind that the amount of new usability problems the observer is able to discover
per participant often decreases rapidly after 5 to 6 participants [30]. Therefore,

only five participants conducted the validation test.

Y000 Jesisacwiviesine

75% -

heesseere.] == Teledata

50% +

w Mantel

= Savings
25% -

.
sessassssmsnsnshsssnannrsnnnnnnbannnnnn
" "

*| #= Transport [

.
prmsmsisebanssrassannnnaliion

Average proportion of usability problems found

10 15 20 25 30
Number of evaluators in aggregate

0%

L=]
[3, " S,

Figure 9.1: Proportion of usability problems found by aggregates of size 1 to 30

(301

University students were asked to join the test, as it was not possible to have

additional staff members of The Living Room participate in the test due to time

9.1. Usability Test 93

constraints. The students were chosen as a viable alternative, as the employees
of The Living Room were also young adults who most likely attend some form
of higher education. This could also be seen as a validation test, as there was
a need to ensure that the product satisfied the user’s needs and the established
requirements, with the currently implemented features. The structure of the test
could be referenced as a lab test, as opposed to a field test, as the focus was to
give the participants a specific set of assignments which would reflect the same
tasks they would complete on an average workday. To combat the weaknesses
of a lab test, the assignments given would be realistic so the user could validate
whether or not the product would be a viable alternative to their current solu-

tions at The Living Room.

Before the test was conducted, a plan for how the test should be structured was
made (see appendix A). This includes a planning process, with the purpose men-
tioned previously, a task list, and a set of instructions to prepare for the test. The
task list was designed to fit the user’s average workday tasks and was therefore

heavily inspired by the tasks provided by The Living Room in chapter

While the participant would interact with the product, they were asked to think
aloud while trying to complete the assignments. In addition to the participant,
there was an observer, who would notify any usability problems that arose. After
the problems were identified, a precise description of the cause of the issue was

created and ranked into a problem list which can be seen in figure

9.1. Usability Test

94

efficiently”

a long time to find in
comparison to how fast
they solved the
previous assignments.

Assignment Problem description | Category Experienced by
Manager | Employse Person | Person Person Person
1 2 3 4

“There’s an Was not able to Critical
upcoming task complete the ‘ N ‘ ‘ | ‘ ‘
called "Event assignment. High delay
preparation”, but we
don’t know the date. | Could not find the “All
Canyou find it tasks” button. This was
without knowing the | because the text on
date?” the button was

cropped and therefore

they were not able to

read it.
“There are multiple Closed the program. Critical
tasks due today, all ‘ N ‘ ‘ | ‘ ‘
with different Since the filter button Significant
amounts of is right next to the exit | diff. in
progress, try to sort | program button, the expectation
them by their user interpreted the vs actual
progress in order fo | exit program button as
complete them a button that would
efficiently.” close the filter options.
“You need to call Took a long time to find | Serious
your employee the correct menu. ‘ N ‘ ‘ | ‘ ‘
called Freja, but you Medium
have forgotten her The button “manage delay
number, try to find team” was hard to find
it.” because the user tried

to find the information

within the tasks.
“There are multiple Took a long time to find | catastrophic
tasks due today, try | the correct menu. ‘ ‘ x ‘ % | % ‘ ‘
to sort them by their High
urgency in order to The filter button was amount of
complete them difficult to find and took | delay

Figure 9.2: Problem list formed from the validation test

As seen in the problem list, a number of problems did arise during the validation

test. They were all observed by the designated observer and assessed afterwards.

The assessment of the issues was made to give a clear description of what the

issue was, what the cause of the issue was, and how big of an obstacle the issue

could potentially be for the user. There was a similarity between the cause of the

problems, which was that most of them were caused by the user interface being

unclear. This was expected, but by having the problem list, the exact solution to

9.2. Unit Testing 95

the problem becomes clearer. The evaluation method used for this usability test
was the instant data analysis (IDA) method whose purpose is to analyze
data quickly. There was not enough time to create another revision of the prod-
uct, but the information gathered from the IDA technique was valuable for the
future works section as it includes the issues of the usability problems and
their possible solutions. The document used for the IDA technique is available

in appendix A.

9.2 Unit Testing

The Java testing framework, which was used to assure reliability and maintain-
ability via unit testing, was JUnit 5. The tests targeted the models and the
DatabaseMethods interface. The code coverage in the product is not near 100%,
because the controllers and views are using FXML files and JavaFX GUI in their
methods. The FXML files are non-testable by JUnit 5 and the JavaFX GUI has
a test library TestFX, which the group has decided, is too time-consuming to
implement into the product within the given time. The main focus of the tests
was to test that fetching and sending the data to and from the database works
as expected. Furthermore, additional tests were implemented to control that the
model classes Task and User do not accept invalid input from the user when
creating tasks and users.

It is essential that while developing the product, the group assures that the func-
tions return the expected outputs. It saves the group time when developing the
features further because the existing code can be checked that it has not been
broken by running the automated tests instead of manually testing the whole
product multiple times. Automatic testing also makes the code base easier to
maintain throughout the creation of the product. When a unit test is created and
a bug occurs in the product, it is effortless and fast to check where in the code

base the function and methods are outdated or failing.

Chapter 10

Discussion

In this section, the solution of the project, and the process leading up to the
solution, are discussed. As for the product, different (likely better) approaches
to designing the solution, the degree of success at which current features are
implemented, and yet-to-be-implemented features from the MoSCoW-model and
user feedback are discussed. Considering the project itself, the course of action

and cooperation with the client are discussed in the process section [10.4}

10.1 Java as front-end

In hindsight, it is clear that using Java for purely back-end, server-side develop-
ment in the context of a web application would have resulted in a more main-
tainable and up-to-date solution. Because, when the browser matured and became a
clear difference between backend and frontend programming models, Java shifted towards
server-side work. [33] A viable option for a new front-end could be a combination
of React (UI library) and Bootstrap (front-end toolkit), providing a component-

based, (almost) drag-and-drop level simplicity, and solid looks.

96

10.2. Watch for changes 97

10.2 Watch for changes

10.2.1 Listen for update

From a usability standpoint, listening for changes in the database and automat-
ically updating the user interface was considered a relatively high priority, but
due to time limitations, this crucial functionality was left out. Certainly, refresh-
ing a page rather than listening for changes is not a favourable option. Even
though a full implementation was not possible, the technology itself was experi-
mented with, and a working, small-scale example was written, implementing the
guide provided by the MongoDB team [39].

The key concept to understanding real-time updates in a MongoDB setting is
change streams. In basic terms, a change stream allows applications to watch for
changes to data and react to them [39]. A change stream returns change events if
changes occur, which are documents containing information about the updated
data. Change streams in Java are not asynchronous, which means that no parallel
operation can be run while a change stream is open. There are some potential
workarounds, such as closing and opening the change streams with every action

or, preferably, running a parallel application in the background.

10.2.2 Observer pattern

Another solution to updating the UI, when the models get updated, is to make
use of the observer pattern. The observer pattern is a design pattern in which an
object has a list of observers who are notified by the object when a change has
occurred. This is usually done by calling one of their methods, for instance, to

update the UI [14]. This was not done due to time constraints.

10.3. Future Work 98

10.3 Future Work

10.3.1 Minimizing server interaction

Another aspect of the prototype, which could be improved to better align with
the needs of the client, is the loading time of certain pages. Following brief re-
search, it was found that working with MongoDB, a single complex query can bring
one’s code grinding to a halt [7]]. Fetching numerous tasks and passing them to the
rather outdated JavaFX-based Ul is understandably an expensive operation, but
the constant query could be streamlined in combination with the implementation
of the previously described change streams. Fetching all data and working with
them locally, and only updating new entries, could dramatically reduce loading
times as no new connection should be established when doing simple read oper-

ations. Minimizing server interaction was not achieved due to time limitations.

10.3.2 Model translation

The prototype did not implement a translator for the database model. This is a
disadvantage if the group decides to change the database and database API at
some point in the future. A model translator could prevent this issue because
the database functions and the methods in the UI would not be dependent on
each other. The translator could translate the data from the database into JSON,
which is very lightweight in the transportation back and forth in HTTP requests
and it is easily read. In the prototype’s case, the datatype from MongoDB is a
Document type which should be translated into JSON and then the UI methods
should always handle JSON data. With the database functions and the UI meth-
ods separated and independent, the database is easily interchangeable. This is
obtainable by only editing the database functions to adapt the new database and

convert the new data into JSON and the Ul methods would stay the same.

10.3. Future Work 99

10.3.3 Features

The prototype has a few problems and missing functionality which could not be
fixed, nor implemented, due to the short time frame of the project and limited re-
sources allocated for each iteration. The prototype has some critical issues (stated
in the problem list[9.2), which would be a priority to fix. The formerly mentioned
problem list contains all issues discovered during instant data analysis (IDA) and
would be a main source of inspiration for future work. The problems found are:
it took a long time to find the correct menu when looking for information on
an employee, the user closed the program by mistake when trying to reset the

sorting feature, and the "All Tasks" button was not visible enough.

It was brought up that resetting the date selection to today’s date since man-
ually navigating can be tedious. Also, removing all filters when closing the filter-
selection dropdown should be a fairly easy fix to add, since there is already logic
coded that resets filters. During testing, being able to permanently delete tasks
from not only the history view but from the manager view as well, was also a
desired feature. This should be fairly simple to implement, creating a new fxml
file for tasks containing a delete button should be a fine solution - the functional-
ity already exists, it just needs to be applied. Lastly, both in history and all-tasks
views, rather than grouping tasks in a monthly manner, an additional indicator
for weeks was also a desired feature. The logic behind this is considerably more
difficult, since identifying a new year and month is a lot simpler than knowing
exactly which week of a month a task’s deadline is placed - generally throughout

the project, working with dates was difficult and time-consuming.

Having notifications was a feature, which was regarded as a relatively high pri-
ority at the start of the project, but was unfortunately left out because of time

constraints and initial client feedback. Also during testing, it was mentioned

10.4. Process 100

by a participant, that new comments and edits should result in some kind of a
signal function sending a notification to the users as seen in appendix G. From
a usability standpoint, notifications could provide a substantial improvement,
since a manager is not likely to manually check comments for every task, nor

always keep track of progress.

At last, the Ul could be more context-specific with larger buttons and text, since

a busy bartender might not be able to get a close view of the screen

10.4 Process

This section goes in-depth about how the process of this project went and in what
aspects it could have been improved. The topics discussed in this section cover
how the process was planned and how the team worked together - both on the

product and with the client.

10.4.1 Gantt and back-casting

During the early stages of the development of the project, backcasting was used
to establish deadlines, and assign them a date they should be reached. The
method works by starting at the end of a timeline and then defining the steps
needed to reach it by going backwards until the starting date for the project is

reached.

10.4. Process 101

. First fase . sD& | | Rapportd | Start with
Mﬁ:;ay «—— coding <«——{requirements «—— analysis €—— Flnd1;j!plfmer «—— project

17710 | 512 | | 20/ | | | | 99

v

- ; R Final testing s
First test with Last fase Testing with foo Rk Done with Hard I
partner ——» coding ——>» pariner —» rapport 21/12

71211 1211 28/11-2/12 i”;ﬂ‘;”' 19112

Proofreading & -
last of rapport
1211

Figure 10.1: Backcasting made during the early stages of the project

In the context of this project, backcasting was used as an outline for the even-
tual Gantt diagram as seen in figure [10.1] that was created afterwards. The reason

for this was that the Gantt diagram was easier to read and much easier to edit.

Gantt Chart (with start dates) - Expected

Start with project g/ | 2
Find partner 12/9 | &
Start with rapport/analysis 20/ S | 15
System design & requirements 5010 | 12
First fase of coding 17710 S | 12
First test with partner 711 s
Last fase of coding 12711 IS 6

Last part of rapport & 1211 I 6
Last test with partner 28/11 W 4

Final testing feedback implen. 22 7
Done with rapport 19/12 |
Hand in 2112 1

16/9 610 26/10 158011 512

Curationin [Cays

Figure 10.2: Gantt diagram with milestones and the dates we expected to reach them

The first iteration of the Gantt diagram can be seen in figure where
the dates displayed represent when we planned to reach them. In order to en-

sure proper documentation, another Gantt diagram was made, which has the

10.4. Process 102

actual dates of the milestones were reached. This iteration was updated regu-

larly throughout the project and can be seen in figure [10.3]

Gantt Chart (with start dates) - Actual

Start with project g9 [l 2
Find partner 12/9 [l &
Start with rapport/analysis 20/9 S | 15
System design & requirements 5/10 I 12
First fase of coding 17710 S | 12
First test with partner 411 |
Last fase of coding 7711 R 4

Last test with partner
Final testing feedback implen.
Last part of rapport &

2112 |
2712 S | 15
512 R 12

Done with rapport 19/12 1 2
Hand in 21/12 |

16/2 419 2213 8o 2614

Curationin M Cays

Figure 10.3: Gantt diagram with milestones and the dates we actually reached them

Whenever there was confusion about time management or whether there was
time to do certain tasks, the Gantt diagram was used to clear that confusion.
Overall, there was a consensus that this method of time management was much

better than what members have previously experienced.

10.4.2 Pair coding and code review

Throughout the coding process, pair coding was applied. The main motivating
factors were the following; when several people brainstorm and sketch a solu-
tion, it is often more optimal, and nobody is left out of the coding process. Since
the logic has to be explained before a person can begin its implementation, a
number of flaws should come to light and the solution can be optimised. In
other cases, two people may consider providing vastly different solutions and
they must therefore vouch for their case, which can resemble an exam-like situa-

tion, further justifying the validity of the code base.

10.4. Process 103

Before merging new code into the main branch, a code review by two people
other than the pair responsible for the code must be done. This helps both in
further validating the code, as well as making sure that everyone understands

everything in the code.

10.4.3 Communication with client

Communication with the client was done primarily through email and pre-arranged
meetings at the cafe. During the very first meeting, the frequency of meetings
and communication, as well as expectations from both sides, were established.
Both parties agreed that each Friday, a status update should be sent by the group,
containing all noteworthy progression, and if possible, a suggestion for the next
physical meeting’s date and time. During meetings, both regarding the problem
at hand and the solution, information was often validated, and material relating
to the project, such as time schedules were provided (a consent form for using
this information was also signed). Frequent communication was also helpful
during testing, as the product was successfully tested with both a manager and

an employee despite the busy schedule of the workplace.

10.4.4 Group contract

In order to establish an alignment of expectations, a group contract was made and
signed by each member of the group (see appendix B). This was done during
a group meeting where each topic was discussed together as a group. When
something was agreed on, it was written down. To give examples, some of these
topics were "Meeting times", "Roles" and "Break times". The contract was more
or less forgotten, as many of these points were dismissed unofficially. There were
not any major conflicts either, so there was not much reason to refer back to the

group contract anyways.

10.4. Process 104

10.4.5 Conclusion

By analyzing the process of this project, it was clear to see in what ways the
choices made influenced the group dynamic, and in turn, the quality of the prod-
uct. Having proper planning and time management was incredibly beneficial, as
it could have been easy to lose focus, both because of the size of the project and
the group itself. Establishing a fixed method to develop the product ensured
that its quality would remain the same, no matter which member worked on
it. Some aspects of the project were not as beneficial for the process, like the
group contract, which was not used much during the project, but evaluating and

documenting it is important for future work.

Chapter 11

Conclusion

The software solution developed throughout this project proposes an answer to
the problem statement The problem statement itself was formulated in con-
sultation with the client of this project. During this project, the currently de-
ployed system was explored, alternative solutions were researched, and a new
system was designed and refined through an iterative work process. This process
included requirement specification, design, implementation, testing, and evalu-
ation. One of the main points of the problem statement was to contribute to
achieving an improved overview of everyday task management and adminis-
tration - including documentation and communication of tasks. Based on the
tests conducted, it can be concluded that the solution provides a prototype for a
uniform platform, which in theory is a vast improvement in comparison to the
current situation. However, due to the relatively short time span of the project,
not all requirements specified in section 5.5 were satisfied. As a result, the ap-
plication did not reach its full potential and was unfortunately never deployed
and used at The Living Room. Another crucial point of the problem statement
was to reduce the confusion regarding personal responsibilities. Based on testing
results, especially focusing on employees, the solution provides solid and easily

comprehensible information and provides a platform for communication in case

105

106

there is any uncertainty regarding an assignment.

Bibliography

Nick Babich. What Is Affordance and How Does it Impact Design? URL: https:
//xd .adobe.com/ideas/principles/web-design/what-is-affordance-

design/. (accessed: 15.12.2022).

S Balaji and M Dr. Murugauyan. WATEERFALLVs V-MODEL Vs AGILE: A
COMPARATIVE STUDY ON SDLC. URL: https: //mediaweb . saintleo .
edu / Courses / COM430 / M2Readings / WATEERFALLVs \ %20V - MODEL \ %20Vs \
%20AGILE \ %20A \ %20COMPARATIVE \ %20STUDY \ %200N \ %20SDLC . pdf. (ac-
cessed: 07.11.2022).

Balsamiq. Balsamiq Wireframes. URL: https://balsamiq.com/wireframes/.

(accessed: 19.12.2022).

Kent Beck. extreme programming eXplained: embrace change. Addison-Wesley,

2000. 1sBN: 9780201616415.

David Benyon. Designing User Experience. 4th ed. Pearson Education, Jan.

2019. 1sBN: 9781292155517.

Alexander Bojsen. Hvor leenge md man opbevare persondata? Fd svaret HER!
URL: https://persondatakonsulenterne.dk/blog-om-gdpr/hvor-laenge-

maa-man-opbevare-persondata-faa-svaret-her/. (accessed: 14.12.2022).

Craig Buckler. Solutions for MongoDB. URL: https://wuw.sitepoint.com/

7-simple-speed-solutions-mongodb/. (accessed: 05.12.2022).

107

https://xd.adobe.com/ideas/principles/web-design/what-is-affordance-design/
https://xd.adobe.com/ideas/principles/web-design/what-is-affordance-design/
https://xd.adobe.com/ideas/principles/web-design/what-is-affordance-design/
https://mediaweb.saintleo.edu/Courses/COM430/M2Readings/WATEERFALLVs\%20V-MODEL\%20Vs\%20AGILE\%20A\%20COMPARATIVE\%20STUDY\%20ON\%20SDLC.pdf
https://mediaweb.saintleo.edu/Courses/COM430/M2Readings/WATEERFALLVs\%20V-MODEL\%20Vs\%20AGILE\%20A\%20COMPARATIVE\%20STUDY\%20ON\%20SDLC.pdf
https://mediaweb.saintleo.edu/Courses/COM430/M2Readings/WATEERFALLVs\%20V-MODEL\%20Vs\%20AGILE\%20A\%20COMPARATIVE\%20STUDY\%20ON\%20SDLC.pdf
https://balsamiq.com/wireframes/
https://persondatakonsulenterne.dk/blog-om-gdpr/hvor-laenge-maa-man-opbevare-persondata-faa-svaret-her/
https://persondatakonsulenterne.dk/blog-om-gdpr/hvor-laenge-maa-man-opbevare-persondata-faa-svaret-her/
https://www.sitepoint.com/7-simple-speed-solutions-mongodb/
https://www.sitepoint.com/7-simple-speed-solutions-mongodb/

Bibliography 108

[8] Cameron Chapman. Exploring the Gestalt Principles of Design. URL: https :

/ /www . toptal . com/designers/ui/gestalt - principles - of - designl

(accessed: 14.12.2022).

[9] Alistair Cockburn and Laurie Williams. The Costs and Benefits of Pair Pro-
gramming. URL: hhttps://collaboration.csc.ncsu.edu/laurie/Papers/

XPSardinia.PDF. (accessed: 04.11.2022).

[10] Connecteam. Homepage (Logged In). URL: https : //connecteam. com/. (ac-
cessed: 2.10.2022).

[11] AAU Institut for Datalogi. En Velstruktureret Applikation. URL: https : //
moduler . aau.dk/course/2022-2023/DSNSWCB31071lang=da-DK. (accessed:
14.12.2022).

[12] Datatilsynet. Hvad er personoplysninger? URL: https://www.datatilsynet.
dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:
~ : text =Personoplysninger \ %20kan \ %,20for \ %20eksempel \ %20v \ %C3 \
hA6re , at \ %,200plysningen \ %20er \ %20 \ %22personhent \ %C3 \ /B8rbar \

%22.. (accessed: 14.12.2022).

[13] Azure DevOps. Azure DevOps Services | Microsoft Azure. URL: https : //
azure .microsoft.com/da-dk/products/devops/\#overview. (accessed:

30.09.2022).

[14] Andrew Eales. The Observer Pattern Revisited. URL: https://www.citrenz.

ac . nz / conferences / 2005 / concise / eales _ observer . pdf. (accessed:

13.12.2022).

[15] Peter Eeles. Capturing Architectural Requirements. 2005. URL: https://web.
archive.org/web/20210315183751/http://www.ibm. com/developerworks/

rational/library/4706-pdf .pdf. (accessed: 14.10.2022).

[16] A.S. Gillis. What is object-oriented programming? URL: https://www.techtarget.

com/searchapparchitecture/definition/object-oriented-programming-

0O0P. (accessed: 14.12.2022).

https://www.toptal.com/designers/ui/gestalt-principles-of-design
https://www.toptal.com/designers/ui/gestalt-principles-of-design
hhttps://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
hhttps://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF
https://connecteam.com/
https://moduler.aau.dk/course/2022-2023/DSNSWCB310?lang=da-DK
https://moduler.aau.dk/course/2022-2023/DSNSWCB310?lang=da-DK
https://www.datatilsynet.dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:~:text=Personoplysninger\%20kan\%20for\%20eksempel\%20v\%C3\%A6re,at\%20oplysningen\%20er\%20\%22personhenf\%C3\%B8rbar\%22.
https://www.datatilsynet.dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:~:text=Personoplysninger\%20kan\%20for\%20eksempel\%20v\%C3\%A6re,at\%20oplysningen\%20er\%20\%22personhenf\%C3\%B8rbar\%22.
https://www.datatilsynet.dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:~:text=Personoplysninger\%20kan\%20for\%20eksempel\%20v\%C3\%A6re,at\%20oplysningen\%20er\%20\%22personhenf\%C3\%B8rbar\%22.
https://www.datatilsynet.dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:~:text=Personoplysninger\%20kan\%20for\%20eksempel\%20v\%C3\%A6re,at\%20oplysningen\%20er\%20\%22personhenf\%C3\%B8rbar\%22.
https://www.datatilsynet.dk/hvad-siger-reglerne/grundlaeggende-begreber-/hvad-er-personoplysninger#:~:text=Personoplysninger\%20kan\%20for\%20eksempel\%20v\%C3\%A6re,at\%20oplysningen\%20er\%20\%22personhenf\%C3\%B8rbar\%22.
https://azure.microsoft.com/da-dk/products/devops/\#overview
https://azure.microsoft.com/da-dk/products/devops/\#overview
https://www.citrenz.ac.nz/conferences/2005/concise/eales_observer.pdf
https://www.citrenz.ac.nz/conferences/2005/concise/eales_observer.pdf
https://web.archive.org/web/20210315183751/http://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
https://web.archive.org/web/20210315183751/http://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
https://web.archive.org/web/20210315183751/http://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP

Bibliography 109

[17] Alexander S. Gillis. DEFINITION quality assurance (QA). URL: https ://
www . techtarget . com/ searchsoftwarequality /definition /quality -

assurancel (accessed: 02.12.2022).
[18] Google. Firebase. URL: https://firebase.google.com/. (accessed: 02.12.2022).

[19] R. D. Hernandez. The Model View Controller Pattern — MV C Architecture and
Frameworks Explained. URL: https : //www . freecodecamp . org/news/the -

model-view-controller-pattern-mvc-architecture-and-frameworks-

explained/. (accessed: 08.12.2022).

[20] Pankaj Jalote et al. “Timeboxing: a process model for iterative software de-
velopment”. In: 70.1 (2004), pp. 117-127. URL: https://www.sciencedirect.
com/science/article/pii/S0164121203000104.

[21] JGoodies. rofessional Java Desktop. URL: https://www . jgoodies . com/. (ac-

cessed: 16.12.2022).

[22] Jyoti Jha. Java Swingx Example. URL: https : //examples . javacodegeeks .

com/desktop- java/swing/java-swingx-example/. (accessed: 16.12.2022).

[23] Jesper Kjeldskov, Mikael B. Skov, and Jan Stage. “Instant Data Analysis:
Conducting Usability Evaluations in a Day”. In: Proceedings of the Third
Nordic Conference on Human-Computer Interaction. NordiCHI '04. Tampere,
Finland: Association for Computing Machinery, 2004, 233-240. 1sBN: 1581138571.
DOI:|10.1145/1028014.1028050. URL: https://doi.org/10.1145/1028014.
1028050.

[24] Aaron Marcus. Graphic Design for Electronic Documents and User Interfaces. 1.

ed. Pearson Education, Inc., 1992. 1sBN: 9780201543643.

[25] Lars Mathiassen et al. Object-oriented analysis & design. 2. ed. Metodica, 2018.
ISBN: 9788797069301.

[26] Microsoft. Azure SQL Database. URL: https://azure.microsoft.com/en-

us/products/azure-sql/database/. (accessed: 02.12.2022).

https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance
https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance
https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance
https://firebase.google.com/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.sciencedirect.com/science/article/pii/S0164121203000104
https://www.sciencedirect.com/science/article/pii/S0164121203000104
https://www.jgoodies.com/
https://examples.javacodegeeks.com/desktop-java/swing/java-swingx-example/
https://examples.javacodegeeks.com/desktop-java/swing/java-swingx-example/
https://doi.org/10.1145/1028014.1028050
https://doi.org/10.1145/1028014.1028050
https://doi.org/10.1145/1028014.1028050
https://azure.microsoft.com/en-us/products/azure-sql/database/
https://azure.microsoft.com/en-us/products/azure-sql/database/

Bibliography 110

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Monday. monday.com | A new way of working. URL: https://monday . com/.

(accessed: 30.09.2022).

MongoDB. What Is MongoDB Atlas. URL: https: //www.mongodb . com/docs/
atlas/. (accessed: 02.12.2022).

Jakob Nielsen. 10 Usability Heuristics for User Interface Design. URL: https :
//www . nngroup . com/articles/ten-usability-heuristics/. (accessed:

14.12.2022).

Jakob Nielsen and Rolf Molich. “Heuristic evaluation of user interfaces”. In:
Proceedings of the SIGCHI conference on Human factors in computing systems.

1990, pp. 249-256.

Java T Point. Java AWT Tutorial. URL: https://www.javatpoint.com/java-

awtl (accessed: 16.12.2022).

Java T Point. Java Swing Tutorial. URL: https://www.javatpoint.com/java-

swing. (accessed: 16.12.2022).

M. Rahul. Is Java Used In Backend Or Frontend? URL: https://www.intervue.

io/blog/is-java-used-in-backend-or-frontend#. (accessed: 08.12.2022).

Jeffrey Rubin and Dana Chisnell. Handbook of usability testing: how to plan, de-
sign, and conduct effective tests. 2nd ed. Wiley Pub, 2008. 1sBN: 9780470185483.

P. Runeson. “A survey of unit testing practices”. In: 23.4 (2006-07), pp. 22—

29. URL: http://ieeexplore.ieee.org/document/1657935/.

Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design. 2 ed.

John Wiley & Sons, 2007. 1sBN: 9780470018668.

Svend Brinkmann Lene Tanggaard. Kvalitative metoder: En grundbog. 3. ed.

Hans Reitzels Forlag, 2020. 1sBN: 9788741277264.

Indeed Editorial Team. What Is User Interface (UI)? URL: https : //www .
indeed . com/career-advice/career-development/user-interfacel (ac-

cessed: 02.12.2022).

https://monday.com/
https://www.mongodb.com/docs/atlas/
https://www.mongodb.com/docs/atlas/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.javatpoint.com/java-awt
https://www.javatpoint.com/java-awt
https://www.javatpoint.com/java-swing
https://www.javatpoint.com/java-swing
https://www.intervue.io/blog/is-java-used-in-backend-or-frontend#
https://www.intervue.io/blog/is-java-used-in-backend-or-frontend#
http://ieeexplore.ieee.org/document/1657935/
https://www.indeed.com/career-advice/career-development/user-interface
https://www.indeed.com/career-advice/career-development/user-interface

Bibliography 111

[39] MongoDB Editorial Team. Watch for Changes. URL: https://www .mongodb.
com/docs/drivers/ java/sync/ current /usage - examples /watch/. (ac-

cessed: 05.12.2022).
[40] OpenJEX Team. JavaFX. URL: https://openjfx.io/. (accessed: 05.12.2022).

[41] Trello. Boards | Trello. URL: https://trello.com. (accessed: 30.09.2022).

https://www.mongodb.com/docs/drivers/java/sync/current/usage-examples/watch/
https://www.mongodb.com/docs/drivers/java/sync/current/usage-examples/watch/
https://openjfx.io/
https://trello.com

Appendices

Appendix A

112

Usability Testing

Things to do before the test

e Manager

@)

@)

Make sure there is 1 overdue task for the date, and 2 normal tasks

Make a task called “Clean bathroom”, and leave this comment: “We don’t
have any more cleaning supplies and the toilet brush is missing!”

Create an employee called Freja with all info filled out

Create an employee called Erik with all info filled out

Create an employee called Thomas with all info filled out

Create a task with the date 03-12-22 and set the percentage to 50%

Create a task called “Event preparation” with the date being sometime in
January

Create 5 tasks with the date 02-12-22 and set them to different percentages

e Employee

O
O

@)

Tasks

Reset changes made during the test of the manager

Create a task called “Open the store”, and set the progress to 0%

Create a task called “Clean the restroom”, and set the progress to 0%

Create a task called “Food preparation”, and include a basic description about
making a sandwich

Create 4 different tasks with different degrees of urgency

e Tasks for the test subject

o

Manager
1. Go to the manager page
2. Try to create a new task called “clean syrup pumps” that repeats once
a week
3. Actually, the task needs to repeat every day, try to edit the task to fix it
4. An employee is unable to clean the toilet because supplies are
missing, they have left a comment on the task to let you know,

respond with a comment to let them know you are aware of the issue.

10.

You need to call your employee called Freja, but you have forgotten
her number, try to find it.

Another employee Erik has changed his phone number to 28335358,
try to update it

Thomas has been fired, try to remove them from the team

There is a task for tomorrow that already is set to 50% progress, try to
fix it by setting it back to 0%

There's an upcoming task called “Event preparation”, but we don’t
know the date. Can you find it without knowing the date?

There are multiple tasks due today, all with different amounts of
progress, try to sort them by their progress in order to complete them

efficiently

o Employee

1.
2.

Go to the employee page

There is a task called “Open the store”, assuming that has already
been done today, try to check that task off as completed

The task called “Clean the restroom” can not be done because the
cleaning supplies are missing! Create a comment within that task to let
Frank and the other staff members know

You were able to clean the restroom somewhat despite the missing
supplies, try to set the progress for that task to 50%

The next task “Food preparation” includes a step-by-step guide that
describes how the food should be prepared, try to find it

There are multiple tasks due today, try to sort them by their urgency in

order to complete them efficiently

Follow-up questions

e Manager

o “Did you notice the colored indicator on the left side of a task? If so, what do

you think it means?”

o “Did you notice the exclamation mark on the left side of a task? If so, what do

you think it means?”

o Is there anything that you felt worked well with the program?

o Is there anything that did not work well?

o Anything you would like to change about it?

Employee
o “Did you notice the colored indicator on the left side of a task? If so, what do
you think it means?”
o “Did you notice the exclamation mark on the left side of a task? If so, what do
you think it means?”
o Is there anything that you felt worked well with the program?
o Is there anything that did not work well?

o Anything you would like to change about it?

User testing - results

Manager:

Log in pa manager: ingen problemer

Virker rimeligt intuitivt for ham at tilfgje task

When type selected - vis kun employees fra den kategori

Typer should be role

Spearger hvad all er

Manager view - arrows ved dato

Today button - brings you back to today

Update fungerer fint

Add comment fungerer fint

Bigger buttons - maybe all the buttons/elements should be bigger

Find number - not intuitive that it's under manage team, but he found it eventually
and said it was fine

Update number fungerede fint

Delete employee fungerede fint

Update progress fungerede fint

Find task without knowing the date var ikke intuitiv og kunne ikke gennemfares.
Anders blev ngdt til at hjzelpe. Knappen “All tasks” var cropped og kunne derfor ikke
ses ordentligt. Bigger buttons...

Sort urgency fungerer fint

Nulstil filtre nar man trykker pa filterknappen (ud ad filterfunktionen)

Sort by dropdown - all the categories in the filter function - sort not filter

The trashcan is missing - mangler vi ikke at kunne slette tasks?

Checked off task says the wrong date in history

Ask if you're deleting series of tasks or just one instance

Genovervej hvordan vi sletter tasks

Red dot (notification dot) nar der bliver tilfgjet kommentarer

Mark new tasks? Until someone interacts with it

Color codes aren'’t intuitive - leave the dots - Frank, color the bars instead? Or maybe
the text

e Make the progress button smaller (just show %), add urgency next to progress button
e Remove the color codes - keep the red circles for overdue tasks - remove !
e Remove the exit button next to the filter button when entering that function
o Weekly view
e Diskussion omkring hvordan employees assignes til tasks
Employee:
e Filterknappen er ikke nem at finde
e Urgency farver kunne vaere omvendt
e Sortering kunne veere nice
Student 1:
e Complete task fungerer fint
e Man kunne ogsa trykke pa progress og se om den har en der hedder “done”
e Add comment fungerer fint
e Set progress fungerer fint
e Find description fungerer fint
e Filter fungerer fint - vi burde dog fa den til at sortere frem for filtrere
e Forstod godt prikkernes betydning
e Programmet virkede
e Det var langsomt - ingen flydende overgang
o Ville ikke fierne farvede prikker. Ville gerne kunne se feerdige tasks
Student 2:
e Complete task fungerer fint
e Overvejede om progress havde en 100%
e Add comment fungerer fint - blev lidt forvirret over den tidligere comment
e Set progress fungerer fint - gjorde det for vi bad hende om det
e Find description fungerer fint
e Filter fungerer fint
e Forstod godt prikkernes betydning
e Det er overskueligt. Fine valg af ikoner - det er let at geette hvad der skal ske
e Ingen kritik - det er meget intuitivt og giver god mening
e Kunne evt. skrive urgency over prikkerne (eller symbol)
Student 3:
e Complete task fungerer fint
e Add comment fungerer fint
e Set progress fungerer fint
e Find description fungerer fint
e Kunne ikke finde filterknappen med det samme - fandt den og sa fungerede det fint
e Forstod godt prikkernes betydning
e Meget nemt at finde rundt i
e Filter kunne vaere mere obvi
Student 4:

Complete task fungerer fint - lsegger meerke til tooltip

e Add comment fungerer fint
e Set progress fungerer fint
e Prgvede at klikke pa Assignees, men opdagede sa i'et - fungerede fint
e Filter knappen var lidt sveer at finde - ellers fungerer den fint
e Forstod godt prikkernes betydning
e Synes det var meget godt. Kunne godt lide tooltips
e Vil gerne kunne se de tasks, der er faerdige
Problem list
Assignment Problem description | Category Experienced by
Manager | Employee | Student | Student | Student | Student
1 2 3 4
“There’s an Was not able to Critical
upcoming task complete the X
called “Event assignment. High delay
preparation”, but we
don’t know the date. | Could not find the “All
Can you find it tasks” button. This was
without knowing the | because the text on
date?” the button was
cropped and therefore
they were not able to
read it.
“There are multiple Closed the program. Critical
tasks due today, all X
with different Since the filter button Significant
amounts of is right next to the exit | diff. in
progress, try to sort | program button, the expectation
them by their user interpreted the vs actual
progress in order to | exit program button as
complete them a button that would
efficiently.” close the filter options.
“You need to call Took a long time to find | Serious
your employee the correct menu. X
called Freja, but you Medium
have forgotten her The button “manage delay
number, try to find team” was hard to find
it.” because the user tried
to find the information
within the tasks.
“There are multiple Took a long time to find | catastrophic
tasks due today, try | the correct menu. x x x

to sort them by their

High

urgency in order to
complete them
efficiently”

The filter button was
difficult to find and took
a long time to find in
comparison to how fast
they solved the
previous assignments.

amount of
delay

Bibliography 119

Appendix B

Samarbejdsaftale til P3

1. Mgdetid

- Hvis vi ikke har foreleesninger mgdes vi i et planlagt tidsrum, som er 9-16, medmindre
andet er aftalt.

- Mgdetider eller zendringer hertil skal aftales senest kl. 20 dagen fgr.

2. Mgdeform og indhold

- Som udgangspunkt mgdes vi pa skolen i grupperummene.

- Hvis vi har aftalt, hvad der skal skrives/laves, kan vi mgdes pa teams.
- Mgder over teams aftales ved fysiske mgder.

- Indhold af mgderne planlaegges fra gang til gang.

- Der holdes morgenmgde om onsdagen.

- Ugentlig kode-opsamling om fredagen.

3. Referater
- Der er altid mindst 1 person til mgderne, som noterer, hvad der bliver sagt / snakket om.
- Der skrives logbog hver arbejdsdag.

4. Roller

- Sekretzer, kontaktperson til vejleder.
- Ordstyrer til samtlige mgder.

- Referent, Logbog/Gantt.

- Korrektur-person..

- Coding buddies.

5. Pauser

- Viholder pause nar alle er enige om at det er okay at holde en pause. Individuelle pauser
er ogsa okay, sa leenge resten af gruppen godkender det.

- Hvis man forlader gruppen, ma man gerne sige, hvor man gar hen.

6. Specielle behov

- Arbejdstider regnes med i gruppens mgdeform.

- Fritidsaktiviteter regnes med i gruppens mgdeform.

- Hvis en deadline ikke kan overholdes, skal dette diskuteres og revurderes i gruppen.

7. Ferie

- I officielle ferier fra uni (juleferie, sommerferie): Det forventes ikke, at man arbejder pa
projektet, men forventningen kan aendres, hvis gruppen fgler for, at rapporten skal
arbejdes pa i ferieperioden.

- Hvis der er tale om privat, individuel ferie, sa skal man oplyse gruppen sa tidligt som
muligt.

- Man fritages ikke for ansvar til gruppen ved privat ferie.

- Ferie for gruppen kan aftales.

8. Weekend

10.

13.

14.

15.

Weekenden er fri medmindre andet er aftalt.

Forventninger

[skriveperioden forventes det, at man laeser rapporten igennem mindst én gang om
ugen.

Der skal veere plads til at alle kan dele sine tanker. Gruppen lytter aktivt.

Der tjekkes op pd hjemmearbejde, nar der arbejdes pa dette.

Lav klare aftaler om, hvad der skal ske/laves og udspecificer arbejdsopgaver.

Der skal veere plads til, at alle kan fa hjelp til sine opgaver, hvis der er behov for dette.
Alle skal have kodet pa programmet pa en eller anden made.

Lgbende kommunikation er vigtig!

Fglg guidelines for kodning, se “Guidelines” (Navngivning af diverse variabler og
funktioner).

Alle skal kunne sta inde for produkt inden deadline.

Der skal veere mulighed for at veere sociale som gruppe uden for skolen.

Kurser

Det er forventet, at hvis man er bagud i et fag, sa skal man aktivt prgve at komme op pa
et acceptabelt niveau. Andre gruppemedlemmer skal ogsa veere opmarksomme pa at
holde faglighedens generelle niveau ved at hjalpe hinanden.

. Arbejdsformer

Coding buddies/pair programming.
Opgaver i mindre grupper.
Individuelt arbejde med opgaver.

. Deadline

Gruppen er opmarksom pa at specificere deadlines og hvad de omfatter undervejs, da
en deadlines indhold kan variere gennem forlgbet.

Der udarbejdes deadlines internt i gruppen lgbende gennem projektet, sa projektet fgles
sa overskueligt som muligt.

IT-Vaerktgjer
LaTeX, Google Drive, Github, Visual Studio Code/Intellij IDEA, Discord, Teams, Draw.io.

Kommunikation

Respektivt. Hvis der er noget man ikke kan na eller deltage til, notificeres gruppen A$AP
over messenger. Hvis det er aftalt at gruppen arbejder er det ligegyldigt hvor i verden
man er, man skal vare tilgengelig.

En aftale er vedtaget, nar alle i gruppen har reageret pa beskeden omkring den givne
aftale over messenger.

Rettelser

Hvis man vil lave markante rettelser i andres tekst i Overleaf, skal man lave en
kommentar pa teksten, fgr man laver rettelsen. Rettelser af stavefejl eller lette
omformuleringer er ellers i orden.

Rettelser skal veere konstruktive og ma ikke veere rettet mod en person.

- Man skal kunne acceptere eventuelle rettelser i sin egen tekst uden at blive fornaermet.

16. Konflikthandtering

- Cool seat: man kan kalde cool seat pa ethvert vilkarligt tidspunkt nar gruppen er samlet.
Personen har fri taletid i maks 5 min, uden afbrydelser fra resten af gruppen.

- Hvis gruppe-kontrakten ikke overholdes af et medlem, laves der en intervention

Samarbejdskontrakt med vejleder

Samarbejdskontrakt mellem gruppe 1 (Louise, Anders, Amalie, Freja, Magnus og Ben) og
vejleder med fglgende krav:

- Der mgdes til tiden.

- Der skrives, hvis der er en, som bliver forsinket eller hvis mgdet skal aflyses.

- Der sendes agenda for det kommende mg@gde mindst 24 timer fgr mgdet.

- Mgdet skal tage udgangspunkt i det sendte agenda.

Kontrakten kan opdateres lgbende, hvis begge parter er enige om det.

Bibliography 123

Appendix C

LR Hygiene - Machine Temperatures 2022 3-Jan

Mal temperaturen flere steder, registrer den varmest malte temperatur.
Measure the temperature in several places, keeps the warmest temperature recorded.

Outside Outside Inside
Kitchen Kitchen Bar Dish- Fridge - Fridge - Storage
Cake Milk ood Left right reezer asher Left Right reezer

Date (5 Co) (5 Co) (5 Co) (5 Co) (5 Co) (-18 Co) (80 Co) (5 Co) (5 Co) (-18 Co)
03 January (Monday)
06 January (Thursday)
09 January (Sunday)
12 January (Wednesday)
15 January (Saturday)
18 January (Tuesday)
21 January (Friday)
24 January (Monday) 4.8 4.2 4.3 4.3 4.3 -20.0 85.0 4.3 4.2 -21.0
27 January (Thursday) 4.2 4.3 4.3 4.5 4.3 -20.0 84.0 4.3 4.3 -20.0
30 January (Sunday) 4.3 4.3 4.5 4.5 4.3 -20.0 85.0 4.3 4.3 -20.0
02 February (Wednesday) 4,2 4,3 4,5 4,9 4,3 -20.0 84.0 4,3 4,3 -21.0
05 February (Saturday) 4,2 4,2 4.2 4.3 4.4 -21.0 85.0 4.5 4.4 21.0
08 February (Tuesday) 4.2 4,9 4.7 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
11 February (Friday) 4.3 4,2 4.1 4.3 4.3 -22.0 84.0 4.3 4.5 -21.0
14 February (Monday) 4.2 4,3 4.3 4.7 4.6 -21.0 84.0 4.3 4.5 -22.0
17 February (Thursday) 4.5 4.2 4.3 4.3 4.3 -21.0 85.0 4.2 4.4 -22.0
20 February (Sunday) 4.3 4.3 4.5 4.5 4.3 -20.0 85.0 4.3 4.3 -20.0
23 February (Wednesday) 4.3 4,2 4.1 4.3 4.3 -21.0 84.0 4.3 4.5 -22.0
26 February (Saturday) 4.2 4.3 4.3 4,9 4,3 -20.0 84.0 4.3 4.5 -20.0
01 March (Tuesday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
04 March (Friday) 4.2 4.5 4.2 4.5 4.4 -22.0 84.0 4.1 4.6 -20.0
07 March (Monday) 4.1 4.5 4.3 4.8 4.1 -22.0 84.0 4.2 4.3 -22.0
10 March (Thursday) 4.2 4.5 4.3 4.3 4.2 -21.0 84.0 4.3 4.4 -20.0
13 March (Sunday) 4.2 4,9 4.7 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
16 March (Wednesday) 4.3 4.3 4.5 4.5 4.3 -20.0 85.0 4.3 4.3 -20.0
19 March (Saturday) 4.5 4.2 4.3 4.3 4.3 =210 85.0 4.2 4.4 =222.{0)
22 March (Tuesday) 4.1 4.5 4.3 4.8 4.1 =222.{0) 84.0 4.2 4.3 -22.0
25 March (Friday) 4.2 4,9 4.7 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
28 March (Monday) 4,2 4,2 4.2 4.3 4.4 -21.0 85.0 4.5 4.4 21.0
31 March (Thursday) 4.8 4.2 4.3 4.3 4.3 -20.0 85.0 4.3 4.2 -21.0
03 April (Sunday) 4.3 4.3 4.5 4.4 4.2 -21.0 85.0 4.3 4.4 -21.0
06 April (Wednesday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
09 April (Saturday) 4.2 4.5 4.2 4.5 4.4 -22.0 84.0 4.1 4.6 -20.0
12 April (Tuesday) 4.3 4.3 4.5 4.5 4.3 -20.0 85.0 4.3 4.3 -20.0
15 April (Friday) 4.5 4.2 4.3 4.3 4.3 -21.0 85.0 4.2 4.4 -22.0
18 April (Monday) 4.1 4.5 4.3 4.8 4.1 -22.0 84.0 4.2 4.3 -22.0
21 April (Thursday) 4.2 4,9 4.7 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
24 April (Sunday) 4.3 4.7 4.4 4.3 4.2 -20.0 85.0 4.3 4.4 -20.0
27 April (Wednesday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
30 April (Saturday) 4.2 4.5 4.2 4.5 4.4 -22.0 84.0 4.1 4.6 -20.0
03 May (Tuesday) 4.1 4.5 4.3 4.8 4.1 -22.0 84.0 4.2 4.3 -22.0
06 May (Friday) 4.3 4.3 4.5 4.5 4.3 -20.0 85.0 4.3 4.3 -20.0
09 May (Monday) 4.5 4.2 4.3 4.3 4.3 -21.0 85.0 4.2 4.4 -22.0
12 May (Thursday) 4.1 4.5 4.3 4.8 4.1 =222.{0) 84.0 4.2 4.3 =222.(0)
15 May (Sunday) 4.2 4,9 4.7 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
18 May (Wednesday) 4.3 4.7 4.4 4.3 4.2 -20.0 85.0 4.3 4.4 -20.0
21 May (Saturday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
24 May (Tuesday) 4.5 4.5 4.2 4.6 4.7 -21.0 84.0 4.4 4.3 -21.0
27 May (Friday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
30 May (Monday) 4.2 4.5 4.2 4.5 4.4 -22.0 84.0 4.1 4.6 -20.0
02 June (Thursday) 4.3 4.4 4.2 4.3 4.4 -21.0 85.0 4.3 4.2 -20.0
05 June (Sunday) 4.5 4.5 4.2 4.5 4.3 -20.0 84.0 4.3 4.5 -20.0
08 June (Wednesday) 4.6 4.5 4.2 4.3 4.2 -20.0 85.0 4.3 4.4 -20.0
11 June (Saturday) 4.3 4.3 4.5 4.3 4.5 -20.0 83.0 4.8 4.6 -20.0
14 June (Tuesday) 4.5 4.2 4.3 4.6 4.7 -21.0 84.0 4.4 4.3 -20.0
17 June (Friday) 4.3 4.4 4.2 4.3 4.4 -21.0 85.0 4.3 4.4 -20.0
20 June (Monday) 4.2 4.5 4.2 4.5 4.3 -20.0 84.0 4.4 4.3 -21.0
23 June (Thursday) 4.3 4.3 4.5 4.3 4.4 -21.0 85.0 4.3 4.2 -20.0
26 June (Sunday) 4.5 4.2 4.3 4.6 4.7 -20.0 83.0 4.8 4.6 -22.0
29 June (Wednesday) 4.5 4.2 4.3 4.5 4.6 -20.0 84.0 4.8 4.5 -21.0
02 July (Saturday) 4.5 4.2 4.3 4.2 4.4 -21.0 83.0 4.6 4.4 -21.0
05 July (Tuesday) 4.3 4.3 4.5 4.3 4.4 -21.0 85.0 4.3 4.2 -20.0
08 July (Friday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 =222.0)
11 July (Monday) 4.3 4.3 4.5 4.3 4.5 -20.0 83.0 4.8 4.6 -20.0
14 July (Thursday) 4.5 4.2 4.3 4.6 4.7 =210 84.0 4.4 4.3 -20.0

LR Hygiene - Machine Temperatures 2022 3-Jan

17 July (Sunday) 4.5 4.2 4.3 4.6 4.7 -20.0 83.0 4.8 4.6 -22.0
20 July (Wednesday) 4.5 4.2 4.3 4.5 4.6 -20.0 84.0 4.8 4.5 -21.0
23 July (Saturday) 4.5 4.2 4.3 4.2 4.4 -21.0 83.0 4.6 4.4 -21.0
26 July (Tuesday) 4.6 4.5 4.2 4.3 4.5 -20.0 83.0 4.8 4.6 -22.0
29 July (Friday) 4.3 4.3 4.5 4.3 4.5 -20.0 83.0 4.8 4.6 -20.0
01 August (Monday) 4.2 4.5 4.2 4.5 4.3 -20.0 84.0 4.4 4.3 -21.0
04 August (Thursday) 4.3 4.3 4.5 4.3 4.4 -21.0 85.0 4.3 4.2 -20.0

07 August (Sunday)

10 August (Wednesday)
13 August (Saturday)

16 August (Tuesday)

19 August (Friday)

22 August (Monday)

25 August (Thursday)

28 August (Sunday)

31 August (Wednesday)
03 September (Saturday)

06 September (Tuesday)
09 September (Friday)

12 September (Monday)

15 September (Thursday)
18 September (Sunday)

21 September (Wednesday)
24 September (Saturday)
27 September (Tuesday)
30 September (Friday)

03 October (Monday)

06 October (Thursday)

09 October (Sunday)

12 October (Wednesday)
15 October (Saturday)

18 October (Tuesday)

21 October (Friday)

24 October (Monday)

27 October (Thursday)

30 October (Sunday)

02 November (Wednesday)

05 November (Saturday)

08 November (Tuesday)

11 November (Friday)

14 November (Monday)

17 November (Thursday)

20 November (Sunday)

23 November (Wednesday)

26 November (Saturday)

29 November (Tuesday)
02 December (Friday)
05 December (Monday)
08 December (Thursday)
11 December (Sunday)

14 December (Wednesday)

17 December (Saturday)

20 December (Tuesday)
23 December (Friday)
26 December (Monday)
29 December (Thursday)
01 January (Sunday)

04 January (Wednesday)

NB! If there is a problem with the temperature of any of the machines then use the Problem / Solution Form

Bibliography 126

Appendix D

LR Bartender — Daily Routines Date:

Opening Shift: Afternoon Shift: /

‘After Opening’ Bartender Routines:

(Sign each item when completed)

Sign

Bake Cookies, Muffins & Banana Cake

Check that music is at correct volume levels (all knobs should be at RED lines)

Write products on the glass facade (cookie & muffin display)

Slice extra tomatoes in metal container (NB! drain extra water from container)

Fill 1 square metal container with bananas (cut into 1/3 pieces)

Prepare 2 bottles of Mango / Passionfruit mix (6 dl Mango + 3 dl Passionfruit)

Prepare Rooibos & Hibiscus teas (NB! write name and date on containers)

Prepare Ginger/Lime juice

Make Bread Roll mix for next day

Check Tuna mix - if necessary to make single or double portion

Cut 1 cm from bottom of fresh Dill and change water (only 1 cm of water)

Write today’s date on bottom of delivered breads from bakery

Check: milk draw is full and check expiration dates of milk, yoghurt & cream

Check: 1 Sugar Syrup bottle by the food prep area + 1 Sugar bottle on shelf

Peel ginger and place in plastic container (NB! change water everyday)

Check Calendar book for customer reservations and prepare reservation signs

Refill the sugar bowl, straws and napkins by the service station

Refill and clean the Salt and Pepper grinders by the service station

Clean Monin syrup pumps (Cleaning Instructions: pump syrup back into

bottles and then clean pump with hot water from tea brewer)

Clean Monin metal stand next to the espresso machine in the dishing
machine

Bake cakes: Tiramisu, Muffins, Cheesecake, Brownie Cake (if necessary)

Wash food stains from the ‘Grey’ wall behind the toaster and espresso machine

Clean brick wall behind the juice grinder

Straighten liquor bottles on the shelves & turn bottle labels facing forward

Change glasses by cash register (credit card receipts & bottle caps)

Clean all the menu display signs above the cookie display with window cleaner

Wash snack bowls and glasses by the food station in the dishwasher

Restock cakes from outside storage room (if less than Y2 cake in fridge)
NB! Remember to write expiration date on the back of the cake display sign

NEW

Check salad ingredients / dressings to see if they need to be prepared / refilled

Restock bar from outside storage room

wgn Evening Shift: To bake / prepare cakes if less than 3/4 in the cake fridge

e Monday: Clean the ‘take away cover’ & ‘sleeve’ containers in dishwasher

e Monday: Clean the ‘plastic containers’ in the draws under toaster in dishwasher

e Tuesday: Wash the ‘sugar stick’ glass jar in dishwasher

e Tuesday: Wash area under the bar sink and the ‘black box’ in dishwasher

® Wednesday: Wash sugar bowl, cinnamon & choco shakers in dishwasher

® Thursday: Clean the fan near the toaster (take it apart and clean in dishwasher)

® Thursday: Make sugar syrup for weekend shifts (4 bottles)

Standard Bartender Shift Tasks:

Prepare coffee beans and add to the coffee grinder (NB! Grind just before brewing coffee)

Clean fresh juice container & empty used fruit bucket at the back of the machine

Check fruit containers (for smoothies) and prepare extra fruit if necessary

Rinse black rags

When restocking fresh limes rinse them first in the sink (inside the metal basket)

Clean food station area

Refill napkins, sugar and straws by the service station

Wipe espresso grinders clean (grinder tray and around machine)

Make an extra chocolate sauce

When making a new whipped cream write the date on the container in colored marker

When opening a new bottle of Red or White wine to write the date on the bottle

NB! Red wine is OK for 3 days from opening / White wine is ok for 4 days from opening

Place delivered bakery products out on plates or into plastic storage boxes or take to

the outside storage room (cakes, carrot cake, etc) NB! Write date on the box

Restock any missing cakes from the storage room if necessary

@ 1900: Change the ‘Cake / Cocktail’ sign to the ‘Cocktail’ side

Before Afternoon Restocking:

Check milk draw

Check fresh fruit

Check frozen fruit draw (strawberries, raspberries, blueberry, pineapple)

Check sliced tomatoes

Check Tuna mix

Things ‘To Do’ when not busy:

(Write the time and sign your initials when each item is completed)

Time

Sign

Clean inside cake refrigerator (wipe glass shelves and any food on bottom)

Sort and organize glasses under the cash register

NB! ‘Small’ glasses on the left / ‘Large’ glasses on the right

Clean white cutting board next to sandwich toaster

Clean the bottom of the milk draw

Clean inside the metal milk containers with a metal sponge

Clean Imported Beer Frig shelves and window (remove beer first)

Change the water in flower vase by the cash register (if we have flowers)

Clean underneath Espresso Machine (as far underneath machine as possible)

Clean & organize the liquor shelves above the bar sink

NB! 3 bottles of each liquor / 6 bottles of Havana Club white Rum

Refill coffee beans in coffee grinders (at the front of the bar)

Restock Take Away cups, Napkins, etc from the downstairs storage room

Clean Syrup Rack (next to the espresso machine) in the dishwasher

Make a new Carrot Cake (if there are 4 pieces or less in the cake frig)

Bibliography 130

Appendix E

LR Weekly Task List

Amalie 27507730 Clean & Organize Shelves Under Cash Register

Amanda 40271038 Clean Food Fridge Gaskets and metal draws inside dishwasher
Cari 29714166 Clean & Organize Draws Under Toaster
Flora 53542969 Clean Baking Oven Area (inside oven, front fagcade, and on top of oven)

Clean & Organize Shelves under Cookie Display area

itk gl (NB! Remember to rotate milk and juices on dates)
Karla 51427404 Clean all facades behind bar + Wash underneath Main Bar Sink
("]
1
g Luna 31215078 Clean and organize draws under baking oven
c
7]
E Mikkel 93864513 Blackboards / Social Media
o0
. . Clean Inside Milk Refrigerator
Mikkeline 60546098 (Pull out draws and wash inside and draw gaskets)
Sara] 29264403 Clean & Organize Shelves under 4 Coffee Grinders
Sara S 28184909 Clean & Organize Corner Shelves by Food Refrigerator
Vencel 53809750 Clean inside Ice Machine
? Clean Cake Fridge (Bottom shelf and inside Door track)
Lasse 30424890 Backup Bartender
Anna Egholm 42615291 Clean 2 Glass Shelves at the end of the bar (above toaster)
Vera 53809750 Clean 4 Glass shelves behind bar
Kira 28876555 Clean shelves in Dishwashing Room
= Anna Ohlsen 52477804
7]
o
Frida 42227942
Helena 27140025 Wash Kitchen Fridges (inside shelves and front door)

Marie 28304756 Clean Baking Oven Area (on top and inside shelves)

Bibliography 132

Appendix F

16/12/2022, 12:17 Mail — amyo21@student.aau.dk

Re: Progress report!

Frank Zadi <frank@thelivingroom.dk>

ti 08-11-2022 09:54
Indbakke

TirAnders Mazen Youssef <amyo21@student.aau.dk>;

Hey Anders,
Here's a quick overview of our cafe as requested by your student colleagues. I hope this helps...

The Living Room café is owned by Frank Zadi and Tiril Haaland. The café is located in the heart of the
Latin Quarter neighborhood in Copenhagen. We offer a mix of different homemade food and drinks as well
as a wide range of cocktails in the evenings. Our style is a mix of modern and Danish 70’s retro to create
a cozy ‘hygge’ vibe. We have a lounge area in the basement filled with couches and a fireplace for those
cold winter months as well as a Moroccan room with a more middle eastern touch.

Regards,

Frank Zadi

The Living Room
Larsbjgrnsstrade 17

1454 Copenhagen - Denmark
Cafe: +45 33326610
Mobile: +45 26291000

-------- Original Message --------
Subject:Progress report!
Date:27-10-2022 14:16
From:Anders Mazen Youssef <amyo21@student.aau.dk>
To:Frank Zadi <frank@thelivingroom.dk>

Hi Frank,

We are currently in full development of our first prototype, where our milestones are getting the basic
functions down.
We would like to meet with you again soon, in order to get your thoughts on our current version.

In the meantime, we have attached some screenshots for you to see :)
The screenshots are not mockups. The buttons have functionality and communicate with our database.

Kind regards,

AAU Group 1

https://mail.aau.dk/owa/#path=/mail/search 11

Bibliography 134

Appendix G

Living room Exploratory & assessment notes

Wednesday, 12 October 2022 13.06

Exploratory test notes
¢ Look to google calander for inspiration on the layout of how a task should be created
¢ Confusion in what pending tasks mean
* When an employee moves a task to active, they should maybe be able to tell who they are
e Less clicks of the task assigning
o Frank said to maybe just have a table of tasks like the sheets document
o Rework the whole page into a table format
¢ Notifications in general are not important
¢ Email notifications would be a good idea when changes are made
e Maybe use progress bars even more, like for each task

Assessment test notes
e Cleaner or bartender types
¢ Frequency fine
¢ Log timestamp for progression, other edits and completion
¢ Filters for showing tasks (overview)
¢ Filter based on roles, percentages, assignees
¢ Always show overdue tasks first
e Clearly mark overdue tasks (an exclamation mark or other icon could be a good idea)
e Status bar colour code based on urgency
e Mark if the manager writes a comment. Maybe mark with the assignee's name if the employee
comments
¢ Note internet dependency in the report

Bibliography 136

Appendix H

Figure 1: Description for each criterion [25]

	Front page
	English title page
	Preface
	Contents
	1 Introduction and Motivation
	1.1 Initial Problem
	1.2 Report Structure

	2 Methodology
	2.1 Object Oriented Programming (OOP)
	2.1.1 Iterative development model
	2.1.2 Pair Programming

	2.2 System Development
	2.2.1 FACTOR Criterion
	2.2.2 Class Diagram
	2.2.3 Event Table
	2.2.4 Behavioural Patterns
	2.2.5 Use Cases
	2.2.6 Functions
	2.2.7 MoSCoW / Criteria
	2.2.8 FURPS+

	2.3 Design and Evaluations of User Interfaces
	2.3.1 PACT Analysis
	2.3.2 Qualitative Research
	2.3.3 Observations

	2.4 Quality Assurance
	2.4.1 Unit Testing
	2.4.2 User Testing
	2.4.3 Instant Data Analysis (IDA)

	3 State Of The Art
	3.1 Digital solutions currently available
	3.1.1 Creating a task
	3.1.2 Management of tasks
	3.1.3 Accounts, roles, and teams
	3.1.4 Miscellaneous

	3.2 General Data Protection Regulation (GDPR)
	3.2.1 Conclusion

	4 Analysis - pt.1: Current System
	4.1 First meeting with manager main takeaways
	4.2 First meeting with employee main takeaway
	4.2.1 Current tools used by the Living Room

	4.3 PACT (People, Activities, Context, Technologies)
	4.4 System Definition and FACTOR
	4.4.1 System Definition
	4.4.2 FACTOR

	4.5 Rich Picture (current system)
	4.6 Conclusion

	5 Analysis - pt.2: The new system
	5.1 System definition and FACTOR (new system)
	5.2 Rich Picture (new system)
	5.3 Problem Domain
	5.3.1 Class Diagram
	5.3.2 Event Table
	5.3.3 Behaviour

	5.4 Application Domain
	5.4.1 Usage
	5.4.2 Functions
	5.4.3 Interfaces

	5.5 Requirements
	5.6 Final iteration of the problem statement

	6 Product
	6.1 Description of the application
	6.1.1 Revision of Requirements

	7 Design
	7.1 System design
	7.2 Design concerns
	7.2.1 Criteria
	7.2.2 Database Study
	7.2.3 GUI Framework Study

	7.3 Architecture
	7.3.1 Component design
	7.3.2 Architecture diagram

	7.4 UI design
	7.4.1 Sources of inspiration
	7.4.2 The original UI idea
	7.4.3 The wireframes
	7.4.4 The final look

	8 Implementation
	8.1 MVC
	8.2 Code examples
	8.2.1 Database methods
	8.2.2 UI methods

	9 Quality Assurance
	9.1 Usability Test
	9.1.1 Exploratory Test
	9.1.2 Assessment Test
	9.1.3 Validation Test

	9.2 Unit Testing

	10 Discussion
	10.1 Java as front-end
	10.2 Watch for changes
	10.2.1 Listen for update
	10.2.2 Observer pattern

	10.3 Future Work
	10.3.1 Minimizing server interaction
	10.3.2 Model translation
	10.3.3 Features

	10.4 Process
	10.4.1 Gantt and back-casting
	10.4.2 Pair coding and code review
	10.4.3 Communication with client
	10.4.4 Group contract
	10.4.5 Conclusion

	11 Conclusion

