

Preface

Aalborg University, December 16, 2021

Andress %{/ /Mh/f

Andreas Hinge Bence Szabo

ahinge21@student.aau.dk bszabo21@student.aau.dk
Benjamin Miéhael Villadsen Goran Kirovski
bmvi21@student.aau.dk gkirov21@student.aau.dk
<
L~

Gustav Lundhus Karina Botes

glundh21@student.aau.dk kbotes21@student.aau.dk

[i SJ%

Louise Foldgy Steffens
Ifst21@student.aau.dk

«

Abstract AALBORG UNIVERSITY

STUDENT REPORT

In today’s age, the act of job-hunting is more effortless than ever, largely due to
the countless technological advancements made, since the general public’s intro-
duction to the world-wide-web. A simple internet search, and immediately, tens
of thousands of potential work-opportunities are shown on the computer screen.
However, the simplicity of our time’s job-application process proposes numerous
problems in itself. Logically, such a trivial process is exploited by many, creating
an ever-increasing competition on the market of human-resources. Recruiting spe-
cialists deal with enormous volumes of applicants for a wide variety of positions,
with no time to thoroughly assess every candidate. This leads to frustration, stress,
mistakes, and ultimately, an inadequate and superficial hiring-process. Fortunately,
this issue can be addressed by utilising a computer-program. This project seeks to
explore a possible software-solution, by parsing a large number of text files belonging
to potential future employees, and only collecting the most valuable data from each
text in a separate file, ordered from most to least qualified. Thus, providing a trans-
parent, universally formatted, and compressed brief and ranking of each candidate.
To create a working prototype, which has a real world relevance, esteemed feedback
from experts within the employment industry, and numeral data collected from a
sizable group of job-seeking individuals, are both considered. This helps raise the
questions of the efficiency of such solutions and the ideal implementation methods,
so that the broadest range of individuals stand to benefit by allowing good candi-
dates to be pinpointed promptly simultaneously with the employer having a trust in
the software’s capabilities. The design of the proposed solution will be engineered
through multiple phases, with implementation and testing will be done concurrently.
The entire process will be showcased in depth, with an eventual conclusion on the
capabilities of the solution.

Table Of Contents

Introduction and motivation

Methodology
2.1 Problem Based Learning
2.2 Imperative Programming
2.3 Supplementary Insights 0oL
2.4 Utilisation and justification of the chosen methods
State-of-the-art
3.1 Introduction to the main topic
3.2 Manual screening of job applications
3.3 Applicant tracking systems - ATS
3.4 Software Exampleso
3.4.1 Competitors on the market
3.5 Limitations by automation of Short-Listing
Analysis
4.1 Stakeholder Analysis
4.2 Salience Model Diagram
4.3 Stakeholders
4.3.1 Within The Project
4.3.2 Within The University
4.3.3 Outside The University
4.4 Interviews
4.4.1 Questions and answers
4.4.2 Sub Conclusion of the Interviews
4.5 Quantitative Survey
4.5.1 Sub Conclusion of the Quantitative survey
4.6 Interviews in comparison with the Quantitative survey
4.7 Persona
4.8 Requirement specifications L.
48.1 Must Have.
4.82 Should Have
483 CouldHave
4.84 Won't Have
The product: A program that solves a problem
5.1 Design
5.1.1 Diagrams
5.2 Phases during product creation
5.2.1 Achievability phase L.
5.2.2 Essentials phase L
5.2.3 Post-interview phase L.
5.3 How does the software work?
5.4 Implementation L
5.4.1 Pre-processing units
5.4.2 Organising data L.
5.4.3 Main function
5.4.4 makeFileKeywords o000

10
12

14
14
14
14
15
16
17

18
18
19
19
19
20
20
20
21
25
27
30
30
31
32
33
33
35
36

0.4.5
5.4.6
0.4.7
2.4.8
0.4.9
5.4.10

Discussion
6.1 The fin
6.1.1
6.1.2
6.1.3
6.2 Future
6.2.1

Conclusion
Figures

References

makeFileWithLineBreaks
contactFinder
readFileKeywords oo
contactRating oo
outputInFile oo
validation

of the product

al product compared to requirements
MacOS and Windows builds
File processing Lo
Tests o
work on the product L.
Other considerations

1 Introduction and motivation

This semester project is based on the subject ”A program that solves a problem”.
This means that a product is to be developed concurrently with a report, which
solves a problem written in the C-programming language. The deadline for the
project is the 17th of December 2021, giving a total project duration of 2 months.

In this case, it was decided to focus on the topic of job application management
and professional recruitment. Large companies must process an abundant pile of
job applications for each and every position, and this practice can require a massive
amount of time and resources, which could be better spent elsewhere. The time
consumption aspect of the complex recruitment process is a highly relevant issue in
our modern capitalistic society, in which multinational companies constantly com-
pete to get the most suited employees, and thus gain considerable advantages over
their competitors. In the recent years, by virtue of digital solutions, it has become
commonplace to advertise and apply for a job using the internet. Popular job posts
can result in innumerable relevant applications and candidates, which the hiring
company would have to manually look through and choose from. Unfortunately, in
a considerable amount of cases, many of the applications may not be well suited
for the job, since it has become incredibly easy for job seekers to simply apply for
a lot of jobs in the hope of getting accepted to any one of their options. Even in
these cases however, the application still has to be screened, taking valuable time
and resources from the company involved.

Based on the group’s research and personal interviews, the scope of the problem
was subsequently further reduced to the handling of cover-letters during the recruit-
ment process, rather than looking into creating a CV-sorting solution. With the
help of professional insight, it was clear, that rather than taking the responsibility
for a central part of a recruitment process, it is generally much more appreciated to
automatise a branch of the work, which is widely overlooked due to a lack of time.
With focus on the topic of job application management as a part of a recruitment
process, the problem statement is defined as the following:

Using a software solution, how can the hiring process be streamlined for
companies with many applicants, thereby reducing their resource consump-
tion on identifying optimal candidates for jobs with specific requirements?
Furthermore, how can the same software solution provide the recruitment
specialists a more thorough picture of the applicant, summarising the most
crucial information from a written document?

Throughout the project, in-depth research, a considerable number of personal in-
terviews, data analysis, and coding is performed with the intention of being able
to come forward with a satisfactory answer and a functional prototype for the soft-
ware solution for the initial problem statement. In order to conduct research, which
depicts the problem field as authentically as possible, a considerable amount of
professional first-hand information and numeric data is gathered on today’s recruit-
ment solutions and job application management, in addition to the knowledge gained
from fundamental literature. Finally, the empirical data collected is used to design
a computer program, that can provide a stable prototype of a software solution for
a real-life problem, encapsulated by the formerly cited problem statement.

2 Methodology

The purpose of this section is to introduce the specific selection of methods, that was
used throughout the project in order to create a solution for pertaining to the prob-
lem statement. The selection of these methods have therefore greatly contributed
to the ability to streamline the recruitment process for companies with many appli-
cants, and allow for future/hypothetical clients to implement a recruitment system
that is significantly less resource intensive than their current one. These methods
were both relevant in terms of problem identification, delineation, and eventual solu-
tion. More specifically, this section will primarily look at general planning methods
in problem-based learning, preferred approaches in imperative programming, and
overall introduction to the main methods, that helped answer the problem state-
ment.

2.1 Problem Based Learning

The structure of the report is largely based on the concept of Harboe’s mixed meth-
ods [1]. The work process was structured according to a mixed method. It begins
with an exploratory qualitative knowledge search along with various qualitative
studies, such as interviews with experts and specialists. This is followed by quanti-
tative research, i.e. questionnaires, which can be analysed with graphs. In essence,
qualitative research takes the role of pilot-research throughout the preliminary in-
vestigation, and the research builds upon the fundamentals laid by it.

The first qualitative method used was systematic information search. Here, the-
saurus and Boolean operators were utilised for more controlled results. Unfortu-
nately, due to the niche nature of the problem area, the group could not use smaller
databases, such as the AAU Library. Instead, the group’s focus was placed on the
information available on Google Scholar, which became a central database for the
sources of the task. Following Aarhus University’s recommendation [20], all mem-
bers of the group were especially careful when selecting sources located on Google
Scholar, always double-checking the authors’ credibility, and the publishing date of
the paper/book in question.

Another key aspect of information gathering throughout the project was formal
interviews with recruitment professionals. In these interviews, the conversations
were kept open, so that the individuals had the opportunity to freely express what
they thought was important about the issue. The following discussions, however,
always ran along a fixed wire-frame, so that there were specific questions to be asked
each time, meaning that the diverse responses could be compared and trends could
be extracted from the dialogues. The results of these surveys were crucial for the
program’s requirements and design.

The first quantitative survey conducted was a questionnaire targeted at job-seekers.
As mentioned, the concept of this questionnaire is strongly linked to the interviews
mentioned earlier. In this case, it was chosen to ask job-seeking youth about their
perceptions of a good CV /application, and thereby used the collected data to per-
form a comparative analysis with the expectations of recruitment professionals. In
addition, a segment of the responses were used to confirm a some preconceptions
and hypothesis, that had been formed during earlier work. An example would be

the response times for job searches being too long, and that people ordinarily accept
the first (or one of the first) job opportunities they are presented with.

The project was planned using the back-casting method [23], and visualised with
a Gantt chart [23], which had been continuously updated until the final deadline
was met. Due to the relatively short nature of the project, it was expected that the
software solution would resemble more of a prototype, than a fully completed and
polished product.

2.2 Imperative Programming

To program and implement a product, that can address the problems presented by
the formal research and the surveys/interviews, an approach called the ”Software
Development Life Cycle” [22] was used. Form now on, it will be referred to by its
acronym, SDLC. Briefly, SDLC provides an opportunity to ”provide a systematic
framework to design, develop and deliver software applications, from beginning to
end” [22]. This method divides the process up into the following seven phases [22]:

1. Formation

2. Requirement/Planning
3. Design

4. Development/Construct
5. Testing

6. Release

7. Maintenance

The initial formation phase of product development is where the idea is originally
conceived, either from an existing software solution or by creating one’s own software
[22]. The requirement/planning phase mainly focuses on gathering information and
requirements through, for instance surveys/interviews or directly from the potential
user, to have the resources to formulate a design plan. Additionally, a Gantt-timeline
is initialised during this phase, to create an overview over the development process
of the program. The requirements and specifications for the product are formulated
here, in accordance with the results of the qualitative research. The design phase is
where all the knowledge from the analysis of the problem, and the requirement spec-
ifications are put together to get an overview of how the software should run [22].
One can use different diagrams and flowcharts to visualise the design of the software.

The development phase is essentially about building prototypes, performing code
reviews, and making improvements, executing bug fixes and implementing optimi-
sations to the eventual software solution [22]. During this phase, the requirement
specifications take a central role, as the significance and complexity of the imple-
mentation defines the process of the prototype-development. The program could
be running perfectly on certain applications, but not every one of them by some
unknown reason. This is why a testing phase exists. It is to make sure the program
is working as intended at all times by catching bugs, defects, errors etc. so a quality
solution and product is produced in the end [22]. The release phase is a tad bit

unconventional in this case, since a full commercial product is not ultimately being
developed. Therefore, the release phase is now interpreted as the deadline for turn-
ing in the report. By this time, the program should have gone through a thorough
testing process, and should be able to run smoothly without any critical bugs. The
maintenance phase is ignored in this case, because it is unlikely that this software
solution will be worked on further after submission. If continued work were to be
done, then it is in this phase that one would make sure the program is up to date
and meets the adequate standards.

The phases are visualised in figure 1. It is important to see, that throughout the
process from phase 3 to phase 6, documentation is present. Documentation is to
help individuals understand the functionalities of the program, and therefore easily
modify it in all coding phases. The training aspect of the figure is more referred to
software solutions with some or only Al/machine-learning applications. The pro-
gram has no need for training in this development cycle, and therefore is irrelevant
in this case.

SDLC PHASES

Phase | Phase 2 Phase 3 Phase 4 Phase 5 Phase & Fhase 7
Formation Requirement/ Design Construct Test Product ost)
Planning Release Implementation

Project dequir 3 Product Enhancement
initiation Release Maintenance

Rouigh Order Internalf Operational
of Magnitude Cha External Acceptance

(ROM)

Estimate

Project r‘c de T Accaptance
dar ants 2 Review Summary Dacument
Developrment
ec
:

ITRAINING

DOCUMENTATION

Svitla

Figure 1: The phases of SDLC [22].

The approach of SDLC [22] contains plenty of peculiar methods of getting through
each of the phases mentioned above in an effective way to enable the user to define
a satisfactory solution to their problem. In this project, implication of the Iterative
Incremental Model [25] seen in figure 2 was used. Resulting in the requirements
being divided into different priorities; Must Have, Should Have, Could Have, and

Won’t Have [17]. With regard to the priority and complexity of the particular re-
quirements, the assignment has been divided into individual phases, and taken one
requirement at a time and designed, coded, and implemented a prototype in the
version-controlled master-file, before starting over with the next requirement on the
list. These steps are to be repeated for each requirement until the a completed
product phase is reached. The strengths of using this method is that one can pri-
oritise requirements (using the MoSCoW method [17]), and achieve faster product
development (which is crucial due to the limited time). This also allows for the
ability to dynamically change the priority and specifications of the requirements in
the meantime. Thus, also creating a functional program without critical bugs and
defects - of which one is aware of. To employ this model with as few weaknesses
as possible, efficiency in the planning of the iterations was vital, and helped with a
clear design plan to include every must-have requirement throughout the iterations
of the product.

This model fitted the program best, because some of the requirements were known
beforehand, and could easily be changed or prioritised. New results were acquired
continuously from the surveys/interviews in our development/construction phase to
update the requirements throughout. The model was also a quick way to obtain a
functional running piece of software in a short amount of time, which was one of the
guiding principles for this project [25].

Iteration 1
Iteration 2

Figure 2: The Iterative Incremental Model [25].

While constructing the program itself, the programming style of top-down pro-
gramming was utilised, also known as step-wise refinement. In the book, ”Problem
Solving and Program Design in C” written by Jeri R. Hanly and Elliot B. Koffman
[7], this particular software development technique is described as the following;
”A problem-solving method in which you first break a problem up into its major
sub-problems and then solve the sub-problems to derive the solution to the original
problem”[7]. The technique was adopted by identifying all underlying problems of
the main solution, and often even dividing these sub-problems into smaller bits,
then solving them individually [7]. The particular sub-problems could for example
be importing text data from a text file, or creating a simple algorithm, that can find
predetermined words in any given text file. Once a solution was found, a specific
function was created for it. By constructing the solution this way, the individual
members of the group got the chance to work in parallel groups on different seg-

Iteration n

mented sub-problems. This method was used until all of the requirements were met,
again using the Iterative Incremental Model [25]. This resulted in a relatively clean
master file and main function, because the final solution simply consisted of individ-
ual function calls. Furthermore, it ensured the readability of the program, assuring
the possibility of future improvements and patches. Top-down programming de-
sign can be visualised by using a structure chart [7], where it starts with the original
problem at the chart’s level 0. At level 1, it defines the biggest sub-problems without
going into details. Level 2 is where the sub-problems get more detailed. A structure
chart can have as many levels with detailed sub-problems as needed to solve the
original problem. By using the chart in this project, the group gained a satisfactory
overview of the sub-problems at every level and one could easily add modified or
new sub-problems after each iteration of the Iterative Incremental Model [25].

An example of a Structure Chart is in figure 3, where it is based on the function
contactFinder from the code.

Give Rating For
Missing Contact Level O
Infior

Original
Problem

Missing Phone
Mumbers Level 1
-10 Points

Missing Emails

Subproblems “10 Points

Missing Both Emails
And Phone Mumbers Level 2
-100 Points

Detailed
Subproblems

Figure 3: Structure Chart for function contactFinder.

With regard to current industry standards, camel-case has been used for variable
name assignment [2]. In short, camel-case is the practice of writing phrases without
spaces or punctuation, indicating the separation of words with a single capitalised
letter, and the first word starting with either case. Common examples include
”iPhone” and "eBay”. An example of camel-case used for the project is deletePunc-
tuation.

2.3 Supplementary Insights

In this subsection, the relevant methods beyond the scope of the first semester AAU
courses will be detailed.

In order to make the preparation of the program development phase as manageable
as possible, a variety of diagrams and charts were used. The first diagram adapted
was a simple flow diagram [10]. Flow diagrams represent the workload and process
of complex tasks. It is a step by step overview of the program in various boxes, which
are connected to each other by arrows to make these complex tasks more clear and

10

understandable. This gives an approximate idea about how the program should be
running. It also visualises the kinds of input and output parameters to be worked
with and implemented in each function [10]. This diagram can be viewed in figure 13.

Flowcharts also represent the process of a problem and how to plan a process to
solve a problem [10]. When working with a flow diagram, focus was placed on how
to solve the problem by using functions, and how to implement them in a certain
order. The flowchart presents how ideas were arrived at, and which functions should
be created and added to the flow diagram and final solution. In other words, the
flowchart helped to evaluate and select the best ideas for a possible solution. This
method was applied to every requirement and idea to make the process faster and
more effective [10]. One of the flowcharts, that were used for this software, is shown
in figure 15, and is based on the keywordFinder function.

The next step in the planning was to prepare a UML Sequence Diagram [15], where
the passage of time can be seen on the y-axis, and the functions (normally classes)
are distributed along the x-axis. The sequence diagram gives a better overview of the
functions in the program, and is a useful tool for planning how the code should be
structured. On the sequence diagram it is clearly shown which functions are called
and in what temporal order, during the entire run-time of the program. The UML
diagram for the program, that the group made, is at figure 14. Only a selected num-
ber of functions were chosen to be visualised through the sequence diagram, based
on their importance in visualising the inner workings of the finished prototype of
the program.

The last tool used in the preparation of program development was pseudo-code
[12]. Pseudo-code is a way to set up a problem by writing in a syntax-free language,
and although it is not a requirement, pseudo-code more of often than not has some
constructs to make it more readable. Using pseudo-code is a technique to write
distinct steps in a complex algorithm or problem that is easy to understand for ev-
eryone, not just programmers. Pseudo-code was used to achieve better readability
for specific code-snippets, and a better understanding of how an idea is implemented
in code [12]. It also served as a middle -round between the flow diagram and writing
actual C-code. This eased the process of converting the functions from the flow
diagram in figure 13 to code by having this intermediary between the code and flow
diagram.

In the analysis part of the report in figure 17, figure 16 and figure (real code) is
there shown how to go from Flowchart to pseudo-code to real code in a text editor.

Schema.org [18] was utilised when researching the properties of a person, because
it provided suitable ideas and frameworks for extracting information about an ap-
plicant. Other than that, the website also specifies the expected data-type of these
variables, which also gave the group a rough idea of how these variables should be
extracted and manipulated in the program [18].

Lastly, the MoSCoW Method [17] was used to organise the product’s requirement
specifications. MoSCoW stands for Must Have, Should Have, Could Have and Won’t
Have, and it is a prioritisation technique for managing requirements. Before start-
ing a MoSCoW-analysis, it is essential that the product team is aligned on what
objectives are included, and should have at least a superficial understanding of all

11

starting elements of the requirements. In this project, all potential requirements are
formulated in accordance with the preliminary research [17].

The "Must Have” section includes "non-negotiable product needs that are manda-
tory for the team”[17]. The initiatives and features included here must be asked
the question; ”Will the product work without it?”. If the the product team’s collec-
tive answer is indecisive or the answers are controversial, either further discussion
is needed, or the requirement should be downgraded to the ”Should Have” section
[17].

The ”Should Have” section contains the ”important initiatives that are not vital,
but add a significant value” [17]. The program will still function without the ”Should
Have” initiatives. They are significant for the program but not vital, and they are
often performance enhancing routines [17].

Next comes the ”Could Have” section. It is the "nice to have initiatives that will
have a small impact if left out”[17]. ”Could Have” initiatives are nice-to-have func-
tions, but unlike ”"Should Have”, they do not represent huge step-back if they are
left out of the program. If the "Must Have” and ”Should Have” sections end up with
being larger than expected, then ”Could Have” is the first section to be deprioritised
[17].

The last section in the method is ”Won’t Have”. In this section contains the "initia-
tives that are not a priority for this specific time frame”[17]. Placing initiatives and
features in this sections allows the group to manage the expectations for this project.
Given the time frame, the groups knew what were priorities and what initiatives is
maybe for the future or not at all [17].

The MoSCoW-method can be applied for more than just one limit such as time [17].
The method can for instance also be used for budgetary constrains. The ”Must
Have” and ”Should Have” is prioritised and later can the ”Could Have” and ”Won’t
Have” be programmed if the budget allows.

Another factor is the skill sets that the programmers have. This way can the initia-
tives be prioritised based on what is possible or not. The group based some of the
initiatives in the ”Won’t Have” section in the analysis by this approach. As well as
the most used approach, that is deadline based, which can be seen in the ”Could
Have” section [17].

There is few disadvantages for using the MoSCoW method [17]. Firstly, initiatives
could be placed in a wrong category by incoherent evaluation, or the group could
have biases considering some initiatives, which also could lead to false placement in
the sections. Other than that, in a real work-environment, the software-development
team is expected to consult with other branches to ensure that their prioritisation
is acceptable [17].

2.4 Utilisation and justification of the chosen methods

This subsection is a discussion of the chosen methods and their use. Harboe’s mixed-
methods [1] were chosen, because of the need for continuous information search, and
thesaurus and Boolean operators for collecting the correct data/information. Inter-
views with recruitment specialists, made the specification, design, and organisation
of program-development a lot simpler. By having these interviews, time aimed
towards re-designing the product and testing was minimised, compared to simply
making assumptions within the group, and only using online sources.

12

The second method in Harboe’s mix methods [1] is quantitative research. It was
chosen to create a survey to gather information about job-seekers. Amongst other
things, it benefited the group by providing the data for a comparative analysis of
job-seekers perceptions of a good application and the expectations of the recruit-
ment specialists. Lastly, the method of back-casting [23] was also a crucial element
in project-organisation. This method gave an overview over the project planning
and timeline over the expected deadlines. The method’s success shows in how most
of the deadlines were met, and the desired solution was completed in time.

For imperative programming methods; SDLC [22], Iterative Increment Model [25]
and camel-case [8] were used. It is difficult to make a program to solve a given
problem without a structure or a process. That is why SDLC [22] is chosen to be
applied. This method benefited us with a common insight into the amount of work
to be put into each phase with respect to the deadline, and what each phase should
contain. The Iterative Increment Model [25] was chosen, because it made most
sense with the kind of program, being created. New information and requirements
are continually gathered throughout the project. That is why a prototype is logical
for each new requirement via the model. Camel-case [8] was chosen for two sim-
ple reasons; it is an industry standard, and contributes to the readability of the code.

The third and last subsection in methodology is supplementary insights. Flow-chart
and flow-diagrams [10] were chosen to be implemented, because their ability to sim-
plify the steps of the process of ideas (flowchart) and implementation of functions
(flow-diagram). By simplifying specific routines, more complex ideas and functions
were quicker to be understood by everyone in the group and therefore resulted in
a more streamlined work-environment. Pseudo-code [12] had the same effect on
grasping functions as the flow-diagram. It was used to explain convoluted func-
tions more directly, and made it more manageable to apply the functions in real
code. The inclusion of UML-Sequence diagrams [15] was chosen to play the role
of a planning tool for the program. It was beneficial for us, because it gave us a
much less convoluted overview of the run-time of the program, depicting only the
relevant function-calls and their return values. Schema.org [18] was utilised because
it gave the group an insight of which properties, and what type of data was going
to be worked with. Furthermore, the MoSCoW-method [17] was chosen, because
the functionalities of the program had to be planned in a systematic manner, and
sorted in accordance with their importance. This was especially paramount due to
the short nature of this project.

13

3 State-of-the-art

3.1 Introduction to the main topic

The following section consists of a presentation of the problem area in the domain of
the topic concerning the process of recruitment in relatively large companies. This
is a problem field, in which a considerable amount of research and problem solving
was done, and a number of companies have come forward with a plethora of solutions.

Whenever a company is in need of new applicants for a job, it needs to overcome the
process of hiring - a process usually requiring several hours. According to Andrew
Fennel, formal recruitment specialist and founder of Standout CV [3], the average
time to review one applicant approximately takes up ten seconds, excluding the time
taken to open and close each application document which - if accounted for - results
in about a minute [4]. The amount of applications a company receives from various
applicants, naturally varies, for instance, Julie Juvera head of HR at Texas Road-
house Inc., claims to receive 400 job applications within 24 hours of posting a job
offer. In addition, Starbucks had 6.7 million job applications during the year 2012,
regarding 65 thousand jobs [6] [29]. On the basis of the 400 applicants Texas Road-
house received, the product of the time used per applicant as well as the amount of
resumes received, results in roughly 6.5 hours. This is almost equivalent to a whole
day’s work, spent on going through resumes.

3.2 Manual screening of job applications

When looking through job resumes it has come to light that many employers are not
reading the full resume, but simply skim it with the ”Ctrl + F” search command [19].
The command is used for allocating keywords relevant for the job such as: certain
skills related to the profession, social media accounts, ability of articulation, previous
workplaces, etc. Information and other aspects that are not considered particularly
crucial and therefore not being read and noted very often, according to Ulrich Schild,
a Senior HR BP at Chartered Accountants Australia and New Zealand, are mostly
fancy formatting and cover letters. Limitations by going through job applications
manually, are the fact that the task will become very monotonous as the amount of
documents increases, resulting in some resumes being overlooked or not evaluated
with the same dedication as others.

Several companies have published their take on improving the mentioned situa-
tion by automating the screening via software, and processing the received resumes
and/or C.V.s creating a shortlist for employers to read [30]. A shortlist is a list
consisting of the best candidates found during the screening of resumes. This spares
them from the tedious process of manually going through hundreds of documents,
making their minds more suitable and clear for choosing the correct applicants for
the job afterwards. Furthermore, the mentioned automation might create a greater
sense of satisfaction for the applicants themselves, as it could result in reduced time
before receiving a reply.

3.3 Applicant tracking systems - ATS

More advanced programs take on machine learning when approving suitable job can-
didates, thus using NLP - Natural Language Processing technology, which involves

14

the machine being able to understand human language in context and automatically
conduct summaries of applications and split the topics and respective skills of the re-
sume into different sections [9]. These advanced software systems differentiate skills
into two different categories; soft skills and hard skills. Soft skills refers to broad
spectrum skills, not necessarily being specifically required in the job description.
Examples of soft skills would be being disciplinary, good at teamwork, empathetic,
etc. Hard skills, on the other hand, means the specific skills matching the ones
written to be required in the given job posting. Thus, examples of hard skills could
be the ability of programming in a certain language, being good at solving mathe-
matical problems or writing good articles.

The term for software used by recruiters, doing this exact thing - screening and
rating various applicants’ resumes to determine whether or not they are fit for a
specific job offering - is broadly known as ATS, ” Applicant Tracking System” [30].
Usually, an ATS is not solely dependant on parsing the resumes of the candidates,
but also on other determining factors, namely questionnaires chosen by the person
responsible of conducting the recruitment process. The mentioned questionnaires
may be a skill test, profiling of personality, background checks, or other types of
information. All of them having a rating in common, which is then returned and
used for filtering out the least optimal candidates.

3.4 Software Examples

Vervoe is one of many examples on software that is used for automating the pre-
hiring assessment [27]. The software consists of three steps. Firstly, the employer
must choose an assessment method from Vervoe’s library - or they can create their
own. A library is a section of questions that the applicants need to answer to be
rated. Secondly, the person hiring needs to invite the potential job candidates via
a link. Lastly, the applicants are screened for the job, and the employer, will re-
ceive a ranking of the people who have applied. Vervoe, like many of the software
used to perform the pre-assessment, does this through applicants answering a ques-
tionnaire/survey. Vervoe is currently used by Wallmart, Australia Post, Omnicorp
Group and G48S.

Other similar programs are Zoho Recruit [24] and Fresh team [13]. Zoho Re-
cruit creates a list based on how much a given resume matches the job description.
Fresh teams’ ATS automatically removes applicants whose resumes has a match
rate below 20 percent, but the other approved applicants are, as with Zoho Recruit,
sent to the employer accommodated by their rating. Beyond the ATS parts of the
software, both companies provide their own user interface, further automating the
recruitment process. The interface functions as a type of social media where em-
ployers can browse through and contact various applicants.

The biggest ATS software system in the world according to David Mehsulam,
founder of JobTestPrep, is Taleo [11]. The system requires the applicant to upload
their resume, written according to a specific Taleo template, as well relevant social
media accounts, such as LinkedIn, to the cloud. Thereafter, the CV is, via machine
learning, scanned for relevant skills and matching keywords. Thus, the website au-
tomatically fills out a form, that the applicant must review and potentially edit,
before submitting it to a job listing. Next, the applicant must complete the men-

15

tioned questionnaire tailored for the specific job, which accounts for the applicant’s
rating also. For a more thorough description of the potential competitors, read the
following section.

3.4.1 Competitors on the market

A more thorough research of the competitors’ software solutions has been done in
order to look into the current climate of market for software that may be compa-
rable to the product, which concludes this project. Here is a general overview of
a few different candidates that provide a service similar to the one currently being
developed for the project. Naturally, features that seem common across the board
are prioritised for the purposes of comparison.

1. Company: Fresh Team [13]

Description:
This Company offers software which can do the following: manage job postings
sourcing candidates, and resume screening.

Features:

Services offered: Recruitment automation How Freshteam can help: The Freshteam
Autopilot cuts down as much as 75 percent of everyday recruiter routines and re-
leases time and resources to focus on core missions like proactively building an
organisational culture or strategising talent acquisition.

e Reject candidates if their test scores are below 20 percent.

e Send out communication to all stakeholders when a candidate reaches the
interview stage.

e Send an online test when the candidate reaches the technical interview stage.
e Advance candidates who have shown interest in working for night shifts.
e Archive all unselected candidates from a specific vendor to the talent pool.
e Send highly personalised emails to all referred candidates.
e Reject candidates who do not have a work-visa in your country.
e Advance candidates who are located within the same city.
Pricing
Free: up to 50 people per business
Growth: 1,2 € / employee and 71€ platform fee / month

Pro: 2,4 € / employee and 119€ platform fee / month
Enterprise: 4,8€ / employee and + 203€ platform fee / month

2. Company: Zoho Recruit [24]
Description:

This Company offers software which can do the following: manage job postings,
source candidates, screen resumes.

16

Features:
Services they offer: Recruitment automation

e Match and associate the right candidates exponentially quicker. Get a list of
candidates that are graded and ranked based on how much they match with
the job requirements.

e Set must-have and nice-to-have skills for a job opening even before publish-
ing. Zoho recruit’s Al engine calculates the applicant’s skill score and identify
candidates within seconds.

Pricing

Zoho Recruit combines the Applicant Tracking and Candidate Relationship Man-
agement

Standard 25€ / month

Professional 50 € / month

Enterprise 75€ / month

3. Company: Oracle Taleo [11]

Description:
This Company offers a software package Oracle recruiting which can do the fol-
lowing: Candidate attraction, candidate engagement, hiring, onboarding, analytics
and reporting.

Features:
One of the services they offer: Oracle recruiting

e Match and recommend candidates fast by using Al.

e Improve productivity by leveraging tools to automate job postings, candidate
communication, screening, interviews, and offers.

e Learn more about the experience, skills, and aspirations of employees with
access to talent data covering all stages of employment.

Pricing
According to Oracle’s own global price list, for an average company, the price can
be estimated to be around 5000 € / month [14].

3.5 Limitations by automation of Short-Listing

The limitations by companies and their increasing use of different ATS-software are
primarily, that some qualified candidates might become sorted out of the initial
assessment mistakenly, because of the fact that the software used by recruiters only
takes certain specific keywords into consideration [29]. However, many different
articles will arise by a Google search, describing how to write job resumes the most
optimal way, more specifically teaching how to stand out whenever a company uses
keyword-scanning programs for screening their big list of applications, which is used
by most big companies, according to Indeed Editorial Team [21]. Online programs,
such as jobscan.co and cvscan.uk, will compare job resumes to job offerings and
return match percentage and recommendations for other keywords, that could make
the applicants more likely at securing a place on the short-list.

17

4 Analysis

The main purpose of this section is to work towards defining the exact way in which
the group will attempt to answer the problem statement. This includes the interpre-
tation and analysis of empirical data, more in-depth, and further delimited research.
At last, the definition of a list of requirement specifications for the product itself
are defined, based upon the formerly mentioned empirical data and forthcoming
analysis. The bottom line is, this section concludes in a definition of a prioritised
set of values and expectations proven by factual data.

The group’s preeminent goal is to, via a software solution, help ease the process
of analysing and compiling cover-letters in a simple and efficient manner for em-
ployers. During the analysis, it is necessary to keep in mind what the group is
working towards, as all of the conclusions must build towards an eventual answer to
the problem statement. The typical employer processes a multitude of applications
for each job-listing, and as such either end up skimming, or generally not reading
certain aspects of a candidate’s provided information meaning that there is a spot
for a reliable product in this market.

Getting an insight into competitor products, and current real world solutions is
vital and gives an idea of both what is possible, and generally seen as the golden
standard /ideal while also allowing a certain niche to be carved out if found to be an
area untouched. Real world free software that filters out in terms of keywords and
matches has been evaluated, and compared to the current program in development.
Paid programs have not been explored, but it is estimated that the product quality
would be higher if it had been chosen to do so.

The group has conducted multiple interviews with numerous experienced employees
(typically) situated in the field of human resources at various Danish firms. These
interviews have served to create a context for implementing a product that could
both be useful, and sought after in the real world. These interviews have established
a connection to those that are the target audience for the product, and to drive de-
velopment towards practical and realistic ideals. A typical interview would establish
who the person was, the employee hiring protocols, the weaknesses and strengths
of the process, and the desires of a program that helps with the initial sorting of
employees.

Questionnaires were sent out in order to get the other side of the coin. This means
that it was with a focus on other students and the hiring process that they went
through. This could for example deal with the amount of time they waited for an
application, the information they would typically sent off to an employer and so on.

4.1 Stakeholder Analysis

It is considered worthwhile to analyse the respective stakeholder in order to create
an overview of both their needs, and possibilities for cooperation. The reason that
both the internal and external stakeholders are considered is simply because it gives
a broad overview of both the people involved in the project, their needs, and how
it both reflects and mirrors that of the targeted users of the final product; Namely
the HR department of firms to aid in recruiting capabilities. The Salience model

18

will be utilised to aid in this stakeholder analysis, and can be broken up into three
elements: [16]

e Power - Ability to influence the project
e Legitimacy - Justified involvement in the project

e Urgency - Expectation of communication from the project team

4.2 Salience Model Diagram

Urgency

Demanding

Non- Stakeholder

Figure 4: Salience Model Diagram [16].

4.3 Stakeholders
4.3.1 Within The Project

Software Group 2 The groups purpose is to create an intuitive, functional and
well designed application sorting software that can be utilised by the non-university
based actors. The group is responsible for coordinating and facilitating both the
product itself, and the information gathering from the other interested parties. This
is in order to take heed of both their requirements, and preferences. This means
that group 2 is at the core of the actors. Strength within the group is the amount
of people that can be utilised in order to cover a lot of ground both in terms of
programming and information gathering at once, whereas a weakness can be seen to
be the lack of experience as this is a first semester project and the solution could be
perceived as overly ambitious. The group has both power, legitimacy, and internal
urgency and is therefore classified as ”core”.

Henning Olesen Functioning as guidance counselor for the group, and has a vested
interest in achieving a great product. Olesen also helps with contacting to the var-
ious parties, and helps with any questions and concerns throughout the project
process at various meetings. Olesen is remarkably experienced, and has good real
world understanding that helps push the process of creating the product in the right

19

direction. A weakness may be that the expectation can be set high, and perhaps
the ambition level reaches beyond that of a first semester project (such as the in-
terviews and more). Henning Olesen would also be classified as ”core” given that
he holds high influence over the course of the project duration, rightful involvement
and expects timely responses from the team.

4.3.2 Within The University

Other Student and Teachers: Throughout the project there will be milestones
where other students and teachers will analyse the project and come with construc-
tive feedback and discussion-points for the future. A benefit to including other
students is that they genuinely want to help, and enjoy the process of going through
another groups project. This also means that they tend to be honest about the
pros/cons of the project. This helps with future iterational work. A negative can
be that perhaps there is not much valuable feedback to fetch or that it is simply
miscellaneous talking-points that were already considered. Here, the teachers would
be considered "dominant” stakeholders, as they both have legitimacy, and power
over the process of P1 and the outcome of the project. However, there is no ur-
gency throughout the process to keep them updated/satisfied. Other students are
discretionary which means justified involvement, but no power or urgency as they
primarily function by giving feedback to the project process occasionally.

4.3.3 Outside The University

Interviewees: The interviewees have taken part in personal interviews in order to
gather information about the specifications of the program, and the processes that
they themselves engage in. This means that since they have personally agreed to
participate in these interviews that they both carry an interest in furthering the
project, and have useful information to give for future iterations. A downside can
possibly be fluff information, or spending a lot of time on information gathering
that may lead nowhere productive, especially if they cannot visualise or consider
factors that they would want in a program, or if they simply just would not use
it. Classified as Dormant. Power to influence the project, but no urgency or actual
involvement. More of a passive power.

HR Departments Within Companies: This actor represents the actual in-
tended user of the product. It is important that the product eases the initial part
of the recruiting process and addresses this in an intuitive and efficient manner as
otherwise doing it manually would be considered better. Strength would be the
feedback, and general idea of the product in everyday use whereas a negative might
be the indication of the program might depend on the actual user as typically the
IT literacy of the average person is not extremely high, especially if dealing with an
older person that tends to do things manually. Classified as Dependent. Legitimacy,
urgency but no power over the project and could potentially change product if their
expectations/service is not up to their standards.

4.4 Interviews

This chapter acts as a walk-through of the qualitative interview, in terms of the
questions, people, and conclusions drawn from the interviews.

20

Throughout the project it was assessed to be profoundly beneficial to gather infor-
mation from experts in order to create a product better suited to solve the problems
people are facing in the real world. With the perspective and information gained,
better requirements can be formed and shape the product to be ultimately more
useful at solving the problem statement. Unfortunately, a crucial mistake that was
made during the arrangement of the interview sessions. The medium of the tran-
scription was not specified in the emails that were send to the interviewees, and all of
the meetings were arranged on a short notice. Recruitment is a sensitive topic with
an endless list of many problematic legal and moral aspects, and the specialists in-
terviewed did not allow voice or video recordings without a preliminary consultation
with their superiors. Thus, the only way of documentation the group was allowed
to employ was to take notes in real-time as the interview progressed. The quotes
seen in the following sections are a direct transcription of the meetings, however due
to a lack of physical evidence, it must be disclosed that these are notes taken by a
member of the group, and were not confirmed by an additional recording.

The following people agreed to participate in our interview:

e Beth Rgnhoff from AlfaNordic
e Sgren Bay Mark from JyskeBank
e Nikita Faber Nielsen from DSB

e Bjgrk Jeppesen from Bgrnehuset Kregme

4.4.1 Questions and answers

Prior to conducting the interviews, it was crucial for the group to discuss how it will
be conducted, and what information is to be extracted from the responses. Starting
with a brief introduction, the interviewees (members of the group) have to set the
scene, and disclose what the interview will be used for, and who they are. Other
than making the group’s intentions public, it also sets a friendly tone, and highlights
that although a set a questions were sent out, it is not a manuscript that must be
followed throughout the conversation. Now, that the interviewees have presented
themselves, it is the expert’s turn to tell a bit about themselves. The information
gathered from here is used to verify the relevancy of the person’s attendance, and
also raises the trustworthiness of the subsequent statements. Next, the interviewee
asks about the expert’s current recruitment process. With these questions, the in-
terviewee must attempt to recognise some habits, preferences, and get the expert to
reflect on the advantages and disadvantages of their system-at-work. During later
work, information here will be central in designing a solution, as it should fit in this
environment. Additionally, numeral data considering time-management and effi-
ciency can eventually also be extracted here, providing more information for further
optimization of the product. At last, the interviewee inquires about the profes-
sional’s subjective view on what is important when evaluating an application / CV,
and what the most important aspects of an application / CV are. The information
extracted here is important in deciding what data deserves most of the group’s focus,
when prioritizing the program’s analytical functions / data extraction from text files.

Before the interviews questions were held, the individuals also received the following
list of question beforehand, to be able to reflect over them before the conversation.

21

Here is the list of questions with the associated answers:
1. Introduction

e 1.1 What is your name?

Ronhoff: Beth Rgnhoff
Mark: Sgren Bay Mark
Nielsen: Nikita Faber Nielsen
Jeppesen: Bjork Jeppesen

e 1.2 What is your background, can you tell us a bit about yourself?

Rgnhoff: I have a bachelor’s degree in psychology and philosophy, and a
master’s in international business with a focus on stress within a workplace.
Mark: I have worked in human resources for about 20 years and as leading
manager of HR for 7-8 years.

Nielsen: I have a master’s degree in human resources from RUK, and have
worked with recruitment since 2013 starting with a commercial bureau.
Jeppesen: I began my higher education in the field of pedagogy and finished
with a master’s degree in psychology

e 1.3 What is your current position as an employee? What does your
job entail?

Rgnhoff: 1 currently work in the HR-field, more specifically stress manage-
ment, and general prevention of stress. I am also partially responsible for
recruiting and finding potential candidates for job openings, and forwarding
relevant screenings of job candidates.

Mark: I am one of the partners and leaders of the HR-department of Jyske
Bank with around 400 successful recruitment operations each year.

Nielsen: I am currently employed as a recruitment consultant for DSB with
a broad portfolio of recruitment-fields.

Jeppesen: I am the pedagogic overseer, and head of the kindergarten, ” Bgrnehuset
Kregme”, which currently has 30 employees. Other than that, I am also re-
sponsible for employee-management and hiring among other things.

2. Recruitment process

e 2.1 On average, how many applications do you receive per job offer?

Rgnhoff: I get approximately 20-30 applications per job-posting.

Mark: I receive 40-100 applications per ordinary job-postings, but commonly
less than 10 per special jobs (special jobs meaning jobs with a requirement for
specific higher education).

Nielsen: DSB has approximately 7 applicants per listing at the moment, with
the predominant category being academic jobs.

Jeppesen: I tend to get 10-30 depending on the job specified within the job
posting.

22

e 2.2 What are the typical steps for you when reading and sorting
CVs/job applications? (If not mentioned, ask if they use software
and if not, if they would do so)

Rgnhoff: I look at CV first, focusing on buzzwords, and the formatting of
the CV.

Mark: I look at CV first, looking for key skills, and additionally at the appli-
cation after I have found a good match in the CV using ATS software.
Nielsen: I focus on checking experience, length and nature of active years at
previous companies, and how often job switches occur.

Jeppesen: I look at CVs first, checking if their home to work road is realistic
and if experience is relevant. Afterwards I focus on the application, mainly
skim-reading.

e 2.3 What advantages/disadvantages do you experience with your
current procedure of application procession?

Rgnhoff: AlfaNordic does not have much focus on the application but only on
the CV. There is simply not enough time to read and analyse the application
which is frustrating, since it could give much more insight into the personality
and competencies of each candidate.

Mark: I do not have time to look at the applications, and generally hire for
jobs without requiring one. This is an advantage of our recruitment process
having a fill-out form for questions, and contact information.

Nielsen: Time I spend on checking the pointless candidates is frustrating/a
time waster. It would take too many resources to fully focus on every appli-
cation in depth.

Jeppesen: There is not enough focus on the application due to time dead-
lines, it takes too much time to read through the whole application.

e 2.4 On average, how much time do you spend on each CV /job ap-
plication?

Rgnhoff: 1 spend 10 minutes as a maximum on every CV, and very shortly
skim the application.

Mark: I spend around 2 min per CV and then sort in 3 piles: rejects, maybes,
perfect, and thereafter I would look at the relevant applications.

Nielsen: I usually spend a few minutes on skim-reading the CVs, take a
glance at the attached application if possible.

Jeppesen: I skim-read the CVs in the first sorting of candidates. Then more
closely read CVs in the second sorting and skim-read the applications attached
for any stand out information.

3 Content of application

¢ 3.1 What information are you primarily looking for in an applica-
tion?

Rgnhoff: AlfaNordic does not really look at applications. But in the CV,

23

there is a focus on buzzwords given from the company to look after, formali-
ties of the CV, correct grammar, relevant work experience, and the applicant’s
ability to sell themselves as a candidate.

Mark: I look for a personality that fits the firm. A good personality makes
up for a lack of experience to me. Here, CV is weighted more, because I select
only some applications to read based on that.

Nielsen: The application is generally not considered a ton, again, DSB mainly
focuses on the experiences and previous work experience of the person listed
via the CV.

Jeppesen: I look for use of relevant technical terms (buzzwords given in the
job posting), how good the applicants’ written language is, address (work to
home road is realistic), the seriousness of the candidate.

e 3.2 What would reject an application (or give it a low score), and
what are the first red flags?

Rgnhoff: If the applicant "defines” what they think is important for the
employer to know and do not give all the relevant information, only give the
previous job titles but do not describe what their job actually was, bad gram-
mar, bad setup of CV.

Mark: I do not have any typical red flags, but the perfect CV should max-
imum fill 2 pages, with a short intro with a bit of a personality and then
relevant experience.

Nielsen: For me, red flags would mostly be if a person hops between jobs
consistently, and often. Job shoppers are not ideal. Otherwise typical bad
grammar, lack of experience, or just generally lackluster effort.

Jeppesen: I think a red flag to me is missing information, bad grammar, bad
setup of CV and application, if the application is too long or too short. If
their work experience and education on their CV do not add up.

e 3.3 Do you personally feel that the initial sorting can be frustrating
at times or that it could be more efficient?

Rgnhoff: I think it is very frustrating that they do not get time to ana-
lyze the application, and if a program was made that would optimise that
issue, it would definitely be helpful.

Mark: I think it is frustrating that there is a number of people who only
apply for the job, because they have to get social benefits. My team and I sort
them out on the first read of the applicant, and place them in the unqualified
pile. It would be effective to disqualify those applicants from the start to save
some time.

Nielsen: To me it could definitely be more efficient, especially the initial bulk
of candidates where a lot of the reading is time wasted as many need to get
sorted away from the more ”serious” pile.

Jeppesen: It is frustrating that there is not enough time to fully analyse
application for buzzwords and the context of those buzzwords.

e 3.4 Do you think that a software solution could help your current

24

recruitment process, more specifically application screening?
3.5 (If yes) What would the ideal CV sorting program look like for
you?

Rgnhoff: AlfaNordic and Niras already uses a ”recruiting-processing” soft-
ware, but it could be made so much better if these requirements were included:
Input your own keywords and not only use the already given ones, addition-
ally comparing the keywords with the CV and the application. Searching for
synonyms for the given buzzword would also be ideal.

Mark: Jyske Bank is already using a software solution, where they use to
handle the CVs not read or screen them. I would want a solution that reads
the CVs and compares them to each other. I also wish to have a dashboard
where the information from the CVs: years of experience, skills, keywords and
personality test is displayed.

Nielsen: Most interesting for DSB would be a percentage match, which in
turn would allow a sorting of the "top” x candidates, in order to remove the
floor of candidates that do not meet a certain threshold in order to save a
ton of time, and allow more in depth analysis of the serious candidates. DSB
prefers qualification focus over keywords as a whole.

Jeppesen: In Halsnaes municipality every company is required to use a given
software to keep track of job posting and those who seek jobs, but that does
not include an application or CV-screening service. A service like that should
contain these requirements: Input own keywords and search applications and
show the sentence where keywords are used. Count how many times the key-
words are used and if they even are used. Compare the use of the keywords
across all the given CVs.

3.6 Who is responsible for deciding when to introduce new screening
protocols and potential software solutions?

Rgnhoff: We have an IT-department here (at AlfaNordic), who manage
these kinds of things, so I do not really know about the process that goes
into implementing new software. I personally do not propose new programs
either, but my higher-ups are always on the lookout for smart digital solutions.
Mark: I have a long history of requesting new software from our ['T-department
here at Jyske Bank. Unfortunately, it is a very demotivating process, since
getting a green-light for local-implementation can take up to 2-3 years, and in
most cases, the propositions fall through.

Nielsen: The people from the IT-department are mostly responsible for
software-related work, but my higher-ups are often the ones who want to
introduce us to new solutions.

Jeppesen: I am sorry, but I do not think I can give a good answer to that
question. I welcome new software, but I personally try to focus to get the
most out of my own field of work.

4.4.2 Sub Conclusion of the Interviews

The knowledge gathered and conversations had throughout the interviews has pro-
vided a clearer picture of what is needed and wanted in a job application screening
software. In particular, the specific requirements’ priority the interviewees have

25

presented gives a good insight into what work needs to be completed up until the
deadline to deliver a satisfactory program.

It can be seen across the interviews that a job application does not receive all
that much exposure compared to a CV. One of the key reasons for this seems to be
the time-consuming nature of analysing applications, and their lack of standardised
structure. The points raised can for instance be seen in Beth Rgnhoft’s, Bjork Jeppe-
sen’s and Sgren Bay Mark’s interview answers to question 2.3. Mark has answered
to question 2.3, that it’s mainly time spent checking the pointless candidates and its
frustrating/a waste of time. Based on the interviewees’ answers to this question, it
can be confirmed that a product specification requirement could be something along
the line of ”input keywords” requirement should be implemented in our program.
A requirement like this would help the user more quickly find some more specific
information in the application, so the application does not ”go to waste” but does
not take so much time up to read and analyse either.

To question 3.4 and 3.5, Beth Rgnhoff from AlfaNordic says the ”perfect software
solution” would both compare the users keywords input across the CV and the appli-
cation. Sgren Bay Mark from Jyske Bank wishes a software that compares multiple
CV’swith regard to specific keywords. Nikita Nielsen from DSB wishes a software
would sort the candidates based on the top percentages of matches with respect to
unique buzzwords. And Bjgrk Jeppesen form Bgrnehuset Kregme wishes a software
would compare but the CVs’ use of keywords across multiple CVs, but also count
how many times the a unique keyword is used.

26

4.5 Quantitative Survey

This research is an extension to the interviews, yielding a possibility for a com-
parative analysis of the specialists’ expectations and the job-seekers’ expectations
as for what a CV/motivational letter should contain. Other than that, a couple
of these questions contribute to the project by confirming some prior hypotheses
and expectations. During its 3 week run-time, the quantitative survey has had 25
anonymous participants, all of them being university students between the ages 19
and 27. Naturally, the group’s conclusions from these results should be taken with a
grain of salt, as with such a small and non-diverse sample-size, the answers’ overall
ability of representation is severely weakened.

1. Have you written a CV/job application before?

® ves
® Mo

Figure 5: Response to Question 1 in the survey.

The first question ensures that the participants’ answers are relevant. Figure 5
above, shows that 80% of the participants in our survey has written a CV / job
application before. This should be kept in mind looking through the rest of the
Survey answers.

2. Have you applied for several jobs at the same time?

® ves
® Mo

Figure 6: Response to Question 2 in the survey.
85% has responded with; Yes, they have applied for several jobs at once, as can be

seen on Figure 6 above. This question helps find evidence that the faster an answer
is delivered, the higher the chance that the job position is accepted.

27

2.1 If yes, did you take the job you were offered first?

® ves
® Mo

Figure 7: Response to Question 2.1 in the survey.

As seen in Figure 7, 76.5% has answered; Yes, they took the job that was first
offered. This shows alongside question 2 that the quicker the hiring companies re-
spond, the higher the chance that the job candidate will accept. So the response
time can be a determining factor if multiple companies wants to hire the candidate.

3. Which of the following is the most relevant general information to
include in a job application? Please tick more than one option.

Image

Phone number 18 (90 %)

Email 19 (95 %)

Social media account(s)

Previous positions 19 (95 %)
Education 17 (85 %)

Age 12 (60 %)

Place of residence

Languages you can speak 12 (50 %)

[} 5 10 15 20

Figure 8: Response to Question 3 in the survey.

This question helps collect data for a subsequent comparison of what employers think
are key elements of a CV and what job-seekers find important. Here, the focus lays
on general information, such as contact info, location, and work experience. On the
Figure 8 above, can the answers be seen. At the top, marked as the most relevant
general information, is both ”"Email” and ”Previous positions” at 95 %. Following
marked as the second most relevant general information is ” Phone number” at 90%
and afterwards ”"Education” at 85% these are according to our survey participants’
the most relevant information’s to include in a job application.

28

4. Which of the following is the most relevant personal information to
include in a job application? Please tick more than one option.

Motivation 11 (35 %)

Personal interests 10 (50 %)

Personal and future goals 12 (60 %)

Personality traits 11 (95 %)

How can YOU create value for

17 (85 %
the company? (85 %)

Why YOU are right for the job 16 (80 %)

Figure 9: Response to Question 4 in the survey.

This question helps collect data for a subsequent comparison of what employers
think are key elements of a CV and what job-seekers find important. Here personal
information is in the spotlight, meaning data such as contact info, location, and
work experience. On the Figure 9 above, can the answers be seen. At the top,
marked as the most relevant personal information is "How can YOU create value
for the company” at 85%. As the second most important is "Why YOU are right
for the job” at 80%. It is worth noticing that the lowest rated option is at 50%,
so according to the survey participants’ all of the options are seemingly important
since all of the options are rated mostly equal. The options at 85% and 80% will
just be the focus from this question.

5. On average, approximately how long did it take from sending your
application to receiving a response?

@ Less than 1 week
® 1-2weeks
A 2 - 3weeks
‘ ® -4 weeks

@ 1 month or more
@ Never received a reply

Figure 10: Response to Question 5 in the survey.

This question helps provide an educated estimate on average wait time for job
seekers. 35 % which in this case is the majority of the survey participants experience
it approximately takes ”1-2 weeks” from sending application to receiving response.
The second most average response time experienced is it takes ”1 month or more”
with 25%. A smaller percentage of the survey participants experience they never
receive a reply.

29

4.5.1 Sub Conclusion of the Quantitative survey

From the Quantitative survey, information and insight from the job seekers perspec-
tive has been gathered.

From question 5. On average, approximately how long did it take from
sending your application to receiving a response? It can be concluded that
the response time for job applications can vary a lot, 35% experience it only takes
"1-2 weeks” while 20% experience it can take ”1 month or more”. This can be due to
the hiring company having to read a bunch of CVs, sorting them etc. This process
could be optimised and take less time.

From the questions 2. Have you applied for several jobs at the same time?
And 2.1 If yes, did you take the job you were offered first? it can be
concluded that the reason the majority of the survey participants apply for several
jobs at once, and afterwards saying yes to the first one offered, could be due to the
long waiting and response time from the hiring companies perspective. When so
many of the participants experience 71 month or more” for response, it makes sense
to apply for several jobs in hope to get hired faster.

4.6 Interviews in comparison with the Quantitative survey

This section compares the results from the Interviews-section and the Quantitative
Survey-section. These comparisons will contribute to some prior hypotheses and
product specification requirements.

The interviews has provided a perspective from the hiring companies and the Quan-
titative survey has provided a perspective from the job seekers. The two perspectives
can now be compared.

In perspective of relevant information to include in a job application, this can be
gathered from the Quantitative survey question 3: The survey participants have
marked they believe the most relevant information to include is ”Email” at 95%
marks, ”Previous positions” at 95% marks, "Phone number” at 90% marks and
"Education” at 85% marks. In the Interview section; Answers for question 3 What
information are you primarily looking for in an application. The Interviewees has
stated they among other things primarily look for ”work experience” - Beth Rgnhoff
from AlfaNordic, Seren Bay Mark from Jyske Bank mainly focuses on the ”experi-
ences and general work trends”. A red flag in question 3.2 given by Bjork Jeppesen
from Bgrnehuset Kregme states: "If their work experience and education doesn’t
add up”. These statements from the interviewees in comparison with the Quantita-
tive survey’s answers adds up, in general there is a some what agreement from both
perspective that previous positions/ work experience and education are some of the
most relevant information to include in a job application.

In the Quantitative survey question it could be relevant taking a closer look the high
marks on ”"Phone number” and ”Email”. The interviewees didn’t speak of looking
after a phone number or email, simply because it is a obvious MUST and required
when applying for a job. Based on these factors, it should be heavily considered
that this projects program could extract these information, making them easily ac-
cessible and quicker to find.

From the Quantitative survey there can be seen a varied experience on the response
time, 20% experience "1 month or longer”. And despite that out interviewees state

30

in question 3.4 that there isn’t enough time for them to read the job application.
Both of these issues benefits our prior hypothesis about a software solution could
benefit these situations.

4.7 Persona

The target audience of the software solution is rather narrow, and therefore it is
sub-optimal to allocate further resources into conducting a large-scale study of this
group of people. Instead, a persona is created to provide a generalised picture of
the ideal client. A persona is a fictional character with a relevant career background
and personality based upon the research conducted throughout the project. The
purpose of constructing this persona is to create a character, which serves as a guide
for choosing the optimal participants for product testing and future interviews. Ad-
ditionally, it is considered worthwhile to keep the constructed persona in mind while
defining the requirement specifications. The group’s persona, Peter, was predomi-
nantly inspired by the literature reading during research spliced together with the
personality, career, and habits of the consulted recruitment professionals. In a way,
this persona could be described as a general characterisation of all professionals,
who are confronted daily with the problems the product is attempting to address.

Meet Peter Johansen. Peter is a 38 year old
male from Silkeborg, Denmark. Peter stud-
ied psychology, and received his cand.mag at
Copenhagen’s University. He boasts a large
professional portfolio, having worked as a
HR-consultant at Sparekassen Sjeelland and
Nordea, a project-coordinator at MAERSK,
and currently works as an HR-manager at
WOLT. Peter takes his career seriously, and
works overtime several days of the week.
Due to the lack of time for his personal life,
he does not have any children, but spends
most of his weekends with his wife, whom he
had met at a company-organised Christmas
party. Although his work can be frustrating
at times, Peter enjoys it, and is still involved
in majority of fields of the HR-department,
with a focus on the recruitment process. He
trusts his instincts, and believes that he has
a unique skill in spotting the needle in the
haystack when looking through CVs. He Jject to copyright.

does not have a particularly positive opin-

ion of ATS systems, and generally does not trust software, which make important
decisions instead of him, as being in the backseat makes him feel powerless. At
times, however, he must skip some less crucial steps in during his work, such as
reading cover letters, or doing a complex sorting process of the CVs he has to go
through. At times like these, at the end of the day, he often feels like he could have
done a better and more thorough job, which make him unsatisfied with his workday.

Figure 11: The constructed persona,
Peter Johansen. This picture was cre-
ated by an Al [28], thus does not rep-
resent a real individual, nor is a sub-

31

4.8 Requirement specifications

m Should Have Could Have m

Import data Giv:or::‘i?gu:cc. Keywords W 5ot by rating Years of Name of Crossplatform Input files
from txt.file ke (:Ir ds prioritised experience applicant version without

rating

Multiple emails Ij_nks from m Personality
Find keywords LrIhEm omplex rating and internet test
system

keywords phone num included Input different

predetermined
filename

di Dashboard/ file-formats
Output file.txt Manage [Sentences with|j _ Newdir File Path UL

multiple | — with only good

txt files applicants Detect num

Synonyms of

Represent z S
Max rating | only important . aN"::::rfltl;ovl\.l:;t (semantics) files in dir
from num of | info in output address PP/ e

keywords file.txt

Dismiss applicants
under given
rating

Figure 12: The MoSCoW method.

For each requirement presented, it is important to be aware of how it was decided
to be significant enough to be depicted on the model, and what it contributes to
the project. The MoSCoW model [17] a tool that provides an insight into the
requirements, desires, and general priorities of a customer. It would be dim-witted
to fully develop a product only to discover that the market it was made for simply
does not need the functionalities and priorities that were falsely seen as pivotal parts
of a solution. The MoSCoW model is an acronym that details following grouping of
requirements:

e M - Must have (Required to meet the business needs)
e S - Should have (Worthwhile to have, but not required for success)

e C - Could have (Could be added if the other functionalities are present. More
in line with shorter term quality of life changes)

e W - Won't have (Future additions that would be nice, but not a priority at
this time)

Essentially, it boils down to the vital, important, possibly worthwhile, and future
additions for a system/product to reach market success. The interviews have helped
with understanding the needs of the real world compared to simply the assumptions
made by the group initially, and the variety of interviewees from different branches
of work also allow for a more objective view into the hiring process and priorities to
ensure that the product is more generalised for the populous, rather than focusing
on e.g. only one employer and specialising it for them.

The requirement specifications contains both functional and non-functional require-
ments [5]. The functional requirements pertain to what the program actually does,
whereas the non-functional address how the software system should fulfill the func-
tional requirements [5]. Most of the functional requirements were defined by the
group, while the non-functional requirements are considered quality attributes of
the program defined by feedback from the interviews and surveys.

32

4.8.1 Must Have

The ”Must Have” category contains the fundamental requirements for the program.
First, there is importing data from text file. It is known from the group’s personal
experience, and can be contributed to common sense, that the majority type of data
handled when applying to a job is human-readable text-based data. This assump-
tion is also confirmed in the research phase and in the interviews. Therefore it is
imperative for the program to work with text-files. As a starting point, the exact
type of text-file is not defined, but in a professional environment, PDF-files would
be in the foreground of the group’s research.

Finding keywords is also placed in the ”Must Have” category, because the feedback
from the group’s interviews showed a general tendency for a need to find certain key-
words in a given text. Rgnhoff from AlfaNordic stated, that the company could make
the most use out of a software, in which user-defined keywords could be compared
with both a large number of CVs and applications. As for this project, the main
focus has been set to exclusively handling applications, nonetheless, it is still a valid
requirement to include. Also, Jeppesen from Kegme Bgrnehus mentioned, that they
would greatly appreciate a software solution, in which the user-defined keywords
were searched for in a given text-file, and then relevant subsections of the text were
extracted and put into a transparent overview. It is also mentioned in the start of
the Analysis section, that finding keywords is a way of tackling the problem at hand.

User-defined keywords is important to be included in the most fundamental re-
quirements, because of the overall important role it played during the interviews. It
makes the program dynamic for the individual user, thus provides a much broader
range of applicability. It is an alternative from having a static list of keywords,
that the user does not necessarily wish to - or need to - search for, when looking
for an optimal candidate. Furthermore, it was likewise mentioned by Jeppesen and
Rgnhoff, that the user should have the possibility to input their own keywords, and
that they were on the lookout for a software solution, which functioned with only a
few, more specific keywords, instead of working with an abundant list of seemingly
relevant, but in reality a large, yet superficial set of words.

Again, providing a weighted rating to an unique keyword, instead of the amount of
keywords included, was a highly sought out feature in all of the interviews. Espe-
cially, Rgnhoff from AlfaNordic expressed her frustration with applicants spamming
their cover-letters with keywords they could find in the job listing. According to
her, in many ATS-systems, it results in a misleading, and for many good applicants,
disadvantageous results.

The final requirement in the "Must Have” category is output in a text-file. That
is, simply because it makes sense to store the results of a successful run-time of the
program. When the results are saved in the form of a text file, they not lost in the
terminal if it closes, thereby the user can always go back and inspect the results,
even after closing the program. It makes the results from the program a lot more
user friendly, when output in text file instead of the terminal.

4.8.2 Should Have

”Should Have” contains the category of features, that would take a basic standard
program in the direction of a functioning application. The first feature is sort by

33

rating. It is straightforward, that the program should have a sorting system to filter
out the worst candidates. In relation to both the problem statement and the mere
idea of reducing time-consumption, it makes a lot of sense. Additionally, during the
interview with Nielsen from DSB, it was clearly stated that the company was miss-
ing a sorting system where there were top "x” candidates and the rest was filtered
out.

In extension to being able to sort candidates from best to worst, the program should
also dismiss applicant under a given rating. The given rating is planned to be user-
defined, and therefore it is a dynamic feature that allows the user to define at what
rating the candidates would be filtered out. This gives the user more control over the
process of hiring, which was mentioned in the interviews, referring to the example
from sort by rating.

The idea of assigning specific weights to respective keywords was also mentioned
in the interviews. The interviewees also had a general consensus about the fact
that a prioritised keyword system would greatly benefit them in their search for the
right candidate. The group’s program solution is planned to prioritise keywords in
sequential order. This decision was made to be able to construct a universal system,
which gives realistic results when including all other factors in rating a text-file. On
the other hand, this decision also comes with some disadvantages. More specifically,
the user does not have the freedom to freely weight their keywords, even though in
reality, the prioritisation of keywords is a much more nuanced process, than putting
them in sequential order.

Multiple emails and phone numbers are in the ”"Should Have” section, because of
two things. Firstly, it is frivolous to apply for a job without writing an email or
phone number in the application. Therefore it is important to extract the contact
info and filter those out, who did not bother including their contact-information on
the application submitted. Secondly, the problem statement is about reducing the
use of time and resources. By extracting the email and phone number into the new
shortlist file, then it is easier for the job provider to contact the candidates.

In relation to having multiple emails and phone numbers and dismissing applicant
under given rating, a fairly complex rating system was implemented. This feature
gives applicants with missing email or phone number minus 10 points, because it
would be widely considered unprofessional. Other than that, a point is also given
per unique keyword, at last, the total point of each text-file is calculated, and by
the user-defined minimum-point-boarder, it is finally determined if a text file gets a
place on short-list or not. Like the other rating-related features, this was requested
by most of the interviewees.

The next element in this section is the definition of a maximum possible rating.
This was feature added to ”Should Have”, because it gives the user an good idea
of how far away the actual candidate is from the best possible rating. It’s also im-
portant to include, because the point system is fairly unknown for the user. They
should not have to use time to add the ratings together themselves, because it goes
against the guiding principle of the problem statement, which is saving valuable
time.

When a recruitment specialist must find optimal candidates, one of the main actors
in creating time-waste, is the sheer number of applicants. This is why managing
multiple text files is a ”Should Have” function (nearly Must-have). It is not nec-

34

essary for the program to work, but it is clearly a very sought out feature and is
coherent in terms of the problem statement, where it is implied that the software
solution should manage a great number of applicants.

In an interview conducted, Jeppesen from Bgrnehuset Kregme stated the following:
”..The ideal program should be able to summarise the sentences where keywords are
used...”, when talking about the perfect software solution for streamlining their own
hiring process. Another consideration for this feature is negations. An applicant
could possibly collect a lot of points from keywords, but what if the keywords are
mentioned by negation. By extracting the whole sentences, the user can quickly
see if the use of the keyword is valid or not. Lastly, the feature correlates with the
problem statement by extracting only sentences with keywords into the shortlist file.
This results in a reduction of the reading-time of an application.

The last feature in the should-have category is being able to represent only impor-
tant info in output text file. Referring back to outputting a text file, this feature
is important to the program, because the program needs to save the results and
relevant information from the applications into a file. That is, so the user can open
the file at any time without having to run the program again. Therefore also saving
time for the user, hence a sub-solution to the problem statement.

4.8.3 Could Have

"Could Have” category encapsulates functionalities, which lean towards the non-
essential aspects of the program, as well as quality of life additions that improve the
user’s experience by increasing the utility of the program.

The first feature in this category is the extraction of information concerning previous
workplaces and years of experience. This would allow an employers to quickly glance
over the relevant years of work that a potential candidate may have, which would
be especially useful if a particular amount of experience is at minimum required, or
at least expected before being applicable for a given job. It was mentioned by Mark
from Jyske Bank, that ”"the right experience is better than many years of experience”.

In the same manner, the address of a user could be extracted. This is important
for employers, as a potential employee that lives closer to the workplace is seen as
preferable option in comparison to someone that lives much further away, or even
abroad in certain circumstances. Jeppesen from Bgrnehuset Kregme stated, that
one of the first things she looks at when reading applicants is whether the commute
is realistic, which in most cases narrows down applicants fairly quickly. The reason
it is not in the ”"Should Have” category is merely that an applicant could mention
that they are willing to move for the job, or the location may not be a crucial factor
at all. Nonetheless, they could get filtered out before the employer has the oppor-
tunity to locate that information and thereby miss out on a good candidate.

The extraction of the name of an applicant could make the summation document
more thoroughgoing, but was considered unnecessary as the name will be stated
clearly on the original application, and because it could potentially lead to discrim-
inatory outcomes based on ethnicity. Ronhoff from AlfaNordic stated that the appli-
cants are not allowed to disclose their names in their online application-template, or
even include it in any attached papers, because it could be discriminating or establish
a unwarranted bias.

35

The number of hours an applicant is willing to work could also be displayed, but this
may not be a common element for potential candidates to include in their applica-
tion thus may be insignificant. Hours, and pay-negotiation is a topic that typically
is brought up during the interview processes rather than during the initial screening
stages. Another aspect of time-management, which could be looked at is if an ap-
plicant is looking to be employed full-time or part-time; this problem could however
be solved with the already included keyword system.

Links from the internet was ultimately chosen to be categorised as ”"Could Have”,
given the time/programming constraints of the project. The feature would link
the relevant information stated on the application like e.g. GitHub repositories,
or LinkedIn, creating an even more user friendly approach to the final summation
document.

Another neat feature would be to be able to utilise, and add the input file as a PDF
instead of purely text-files. This would mean direct conversion from the PDF's that
are being handed over to the employers, and an instant way to process it to retrieve
the keywords/relevant information as a whole. Programming this feature was at-
tempted, but the idea was discarded given the time constraints and issues creating
such a function within C. That is considering there were a lot of other requirements
that had to be met before the deadline.

A directory that contains the "good” applicants could also be useful. Especially,
as it would make the management and processing of multiple applicants much sim-
pler when only the relevant ones in the end remain in the final directory. This
would also allow the employer to know exactly which text files are to be read more
thoroughly and as all the junk would be filtered out by default to ease the process.
The reason it is not in the ”Should Have” section is that the library including the
directory functions in C-language was only available for Linux platforms. Therefore,
to include it in the program, the group needed to create the function, which was
determined to be too time consuming.

The inclusion of links/paths to be able to open certain text-files was also consid-
ered. It is a way for the user to click on the applicants on the shortlist file, and
gaining instant access to their submissions. This routine could reduce time for the
user as they do not need to scour through the entire directory to find the text-files
correlating to a given candidate. However, it was not prioritised.

4.8.4 'Won’t Have

The ”Won’t Have” category facilitates the features, and ideas that were not con-
sidered worthwhile for the product at this time, or the foreseeable future. While
objectively potentially useful features the time constraint, priority placing, or de-
velopment strain just simply makes it unworthy to pursue.

The first feature to discuss is a cross-platform version. Ensuring compatibility across
multiple platforms would simply just not be worth the time, or effort especially as
the benefit to having such a version would yield minimal benefits. Having the pro-
gram function on one system that the masses use is enough for now.

A built-in personality test was considered, but as personality tests as a whole are
individual in how a person prefers to structure and analyse them it make it incred-
ibly difficult to make an objective personality test that companies would be happy
to utilise. Many would not even use the function in the first place, and thus makes

36

it pointless and much to demanding to consider.

Given the development time and resource constraint, it was decided to not include
a proper dashboard/user-interface. This would of course make the user experience
more polished, clean and appealing but for now a fundamental working prototype
was the main goal, thus it was discarded for now as it does not contribute enough
to answering the problem statement. Mark from Jyske Bank mentioned that a
dashboard with relevant information from the screening of applications could be
beneficial for them, and it would generally flatten the learning curve of the program.

Identifying synonyms were an incredibly interesting topic discussed throughout the
process, as not everyone utilises the same words, and thus how would one determine
if a keyword was in fact used but just in a different way. In this case, while it makes
sense to consider synonyms and account for all of the different formats, words and
stylistic choices a person may use to treat everyone fairly, there was simply not
enough time to discover the possibilities of this problem-field during this project.
Currently, the program utilises pre-determined file names, and this will continue to
be the case as it was not seen as a priority that it could handle all of the random
names-formats that people may give their files. One way to handle this without
any implementation would be to beforehand specify a preferred format of naming
convention, or an automatic renaming with regard to the order received. Another
way is the create a function for reading a whole directory since the existing directory
only works for Linux.

The possibility of importing different file formats was also vetoed as currently text
files, and potentially PDFs in the future are the main focus. Still, working with
different file formats other than .txt would without a doubt be beneficial, because
applicants often submits in mainly PDF or Word formats.

Dynamic detection of the number of files in directory was essentially implemented
via the dirent.h library, but this could only be used by Linux platforms and was
thus scrapped.

37

5 The product: A program that solves a problem

On the background of the product requirements, the main goal now becomes the
creation of the product-prototype. Throughout this project, the product and report
have been developed concurrently, thus the development process have also been
updated consistently in correlation with the ongoing research.

5.1 Design

This section describes the design and development of the job application analysis
tool, including the implementation of functions partitioned in three main phases;
the achievability phase, the essentials phase, and the post-interview phase. These
phases are described in more detail below. Additionally, a handful of code-snippets
will be analysed, with a primary focus on what problem they solve, how it is solved,
and why the proposed solution is appropriate. It is also essential to disclose, that
the routines and inner workings of the final program were defined as a result of the
research, analysis, and requirement specifications. All functions were developed in
smaller groups of 2-3 people, and was later implemented in a master file collectively,
using GitHub. The main advantages of this method are efficiency, universal read-
ability, and dynamic range of usability.

Main

Global variables:
none

Functions:

+ Input
+ Search
+ Output
h i
Input function Search function Output function
. Input: Input:
Input: = put
’ - Text siring - Contact info strin
- test_t d. bt) as
e - Keyword sfring - Sentences with
keywords strings
Output: Output: . .
- Text string - Contact info gtrlng Output:
- Keyword fxt - Sentences with _ Formatied text
keywords strings

Figure 13: Flow-diagram for the main segments of the program.

As it can be seen in figure 13 the software solution has been divided into four main
parts which are executed sequentially. These main parts are subsequently also di-
vided into smaller, less challenging sub-problems that are solved in a segmented
manner with individual functionalities. Early ideas took form in the form of col-
lective brainstorms, and diagrams for preliminary program structures. In terms of
programming, testing was being done concurrently alongside development. Meaning
that every time a function or new protocol is implemented that it is immediately
tested, and troubleshot if the need arose.

38

The main-function of the program is to be kept as brief as possible. The main
goal for this section of the code is to exclusively include function calls and as few
global variables as possible - preferably none. At the same time, the function calls
should establish a satisfactory insight into the overarching operations of the program.

The input function imports data from text files, and inserts them into appro-
priate storage spaces. At this stage, the most tangible solutions discussed were
strings and string arrays. Later, the imported data was put into data structures.

The search function encompasses the analysis of a given text, using the previ-
ously imported data objects. Specifically, the text is scanned for keywords, contact
information, and numerous other elements, which are crucial for an appropriate rep-
resentation of the contents.

Finally, the output function summarises the data collected about the text in
question, and structures it in a considerably more readable format, than the raw
data. Additionally, when working with multiple files, the output is sorted in accor-
dance with the rating of the texts.

5.1.1 Diagrams

On figure 14, the UML Sequence Diagram depicts the inner workings of the final
iteration of the software solution. The main purpose of the diagram is to give an
overview of the sequence of function calls, and the placement of their implementation
in the finished product. For this diagram, it is chosen to only include the most central
functions for better visibility and a more coherent overview. As mentioned in the
Methodology section, the y-axis represents the passing of time, and the most vital
functions are depicted alongside the x-axis. It is also important to mention that this
diagram does differ from what could be considered a conventional UML Sequence
Diagram. Normally, classes would be used as headers, and their own functions would
be shown under them, but here, a single function is a header, and a call is depicted
with an arrow to a blank rectangle.

39

makeFile- akeFileWith readFile- keyword- sentence- contact- output-
Keywords LineBreaks Keywords Finder Finder Finder InFile

P

makeFileKeywords(void);

S s e s e e e e e e

a e

makeFileWithLineBreaks(index, text array);

for each
keyword

keywordFinder(keyword,
&keywordExists);

I
>

readFileKeywords(index, &totalKeywordCount, text array);

h A
F Y

~

for each
text

sentenceFinder(keyword, fileNumber, text);

h J

for each
keyword

contactFinder(index, text array);

v

B T R I R R I SO

faw s

outputinFile(totalKeywordCount, text array);

¥

Figure 14: UML Sequence Diagram to the finished product.
40

For the construction of increasingly complicated functions, flowcharts such as the
one on figure 15 were constructed. These diagrams are helpful in understanding the
logic behind a functions inner workings when it may be too difficult to understand
outright.

Open and validate
temporary file with
line breaks
" While fgets
has not reached
-~ endoffile -
True: fgets |
proceeds
i keyword
' is a substring —
Fialia taad ~_in current line False:
file is closed strcasestr
True: streasestr returns | r\?étl:ﬂgso?
a value over 0 NULL

Copy line into text
structand add 1to ——
sentence counter

— Close text

Figure 15: Flowchart showing the keywordFinder function.

When working with complex functions, pseudo code was often used to obtain an
understanding of how a problem should be solved. Throughout the project, pseudo
code was mostly written on a blackboard, but one of them has been digitalised
on figure 16 to provide a more aesthetic representation of the method in-use. The
functional code snippet for the same routine can also be seen in the ”Implementation
of code”-subsection.

readFileKeywords{
keywords = keywords.txt -> open text file and validate
number of keywords = 1 -> start with 1 because there is no space before the first word

This part is to count the number of keywords to be able to make an array for them—m™ ———H—"HmMmMmM———————————
while ((char = getc(keywords)) != EOF) —> Read through keyword file
if char = *spacex
number of keywords += 1

reset pointer used to scan keywords

——————————-This part is to import keywords from txt file into string arr;y—m———m—m—"—m—-—"--"-"---——————"+—+""-+-—+“————
initialize keyword string array

for (i < number of keywords)
fscanf(put keywords from txt file in keyword string array)

This part is to locate keywords in the text, and sentences with the respective keywords———-—————————————————--
for (i < number of keywords)
keywordFinder(keyword[i], &keywordExists) —> This function determines if the given keywords exists in the text

if(keywordExists == true)
update rating
update number of keywords in text

sentenceFinder(keyword[i]) —> This function extracts all sentences that include keyword as a substring

Figure 16: Pseudo code for the readFileKeywords function.

41

A simple flowchart diagram for the systematic implementation of ideas was also
constructed, and can be seen on the figure 17 below. Each time a new function
was to be developed and implemented, this process was followed. The relevance of
this model comes into play, as in the beginning of software-development, the group
was lacking professional opinions on what functions to include. By running all ideas
through this workflow, the group could (up to a certain degree) give an educated
guess to evaluate a routine’s relevance in the light of the problem statement and
previous research.

New function idea

Discuss new function
idea collectively

1 Does the idea
| The idea is rejected

contribute
to the solution?

The idea is revised

A

Discuss the potential
implementation

Can the function be

i ?
implemented? Maybe

Code a simple Implement the The idea is
prototype function in master file implemented

Figure 17: Route-diagram to the systematic implementation of ideas.

5.2 Phases during product creation

The following pages contain a detailed description on the different development
phases of the product. The phase descriptions are to a large extent based upon
the specification requirements from the MoSCoW model (figure 12) discussed pre-
viously, and each phase essentially focuses on tackling their share of specification
requirements, and/or building upon and enhancing previously solved specification
requirements.

5.2.1 Achievability phase

The achievability phase represents the most bare-bones prototype of the product.
During this phase, the absolute fundamentals of the program are implemented,
meaning all of the functions included are a necessity for a working product. Because
of the short time-frame of the project, the development began before the majority
of the research was completed. Therefore, it is logical that the first prototype only
contains essential functionalities, meanwhile future research and expansion is being

42

planned. Additionally, this phase also greatly contributed to the common under-
standing of the goals and level of ambition, which should be set for the product
itself. Due to the group’s lack of coding experience, it was crucial to set realistic
goals.

All routines implemented during this phase are specifications from the ” Must Have”
section. Specifically, ”"Import data from text-file”, "Find keywords”, ”User Input
keywords” and ”Output text-file”. To meet the specification requirements in the
current phase, the following functions were developed: makeFile WithLineBreaks,
readFileKeywords, makeFileKeywords and keywordFinder. The makeF'ile WithLine-
Break function creates a temporary duplicate of a text-file, the only difference being
that the duplicate does not include any punctuation, and a line-break separates each
sentence. Generally, when scanning string-based data in C-language, line-breaks in-
dicate the end of a set of information with a so-called s zero-character. This is
important when using standard C-library functions such as ”fgets” or ”"fscant”. The
temporary file with line-breaks is then used in keywordFinder, and is overwritten
every time a new text-file is to be analysed - this also reduces clutter. The make-
FileKeyword function creates or overwrites an already existing keywords.txt file,
storing all of the user-defined keywords. This file is then used in readFile Keywords.
Thereafter, readFile Keywords reads the keywords located in keywords.txt, and calls
keywordFinder for each word within the file. When keywordFinder is ran, the file
created through makeFile WithLineBreak is scanned and checked for the existence
of each keyword as a sub-string of each line.

5.2.2 Essentials phase

The essentials phase represents a further improved version of the final product, now
containing a set of functions which are not vital for the program itself, but are cen-
tral for a satisfactory solution to our problem statement. This phase takes ongoing
research and data from the survey into account. Some of the most crucial prob-
lems tackled during this phase are extracting multiple email addresses and phone
numbers, managing multiple text-files, and allocation of sentences with keywords.
contactFinder and sentenceFinder were developed as suitable functions for these
tasks, and main-function was modified to give the user the possibility to work with
several files at once. For now, it was straightforwardly implemented as a for-loop,
running each function for every text. The majority of the other functions were also
slightly altered and optimised to be able to work with multiple files. The purpose of
contactFinder, is to scan cover letters for the applicants’ phone numbers and email
addresses, and save them in their respective char arrays (they are later altered to be
saved in structs, and a maximum number of 4 email addresses and 4 phone numbers
is defined). readFileKeywords and keywordFinder have been upgraded to now also
count and print out the the amount of unique keywords found. This optimisation
also sparked a fascinating discussion of the implementation of a universal rating
system, which is also a central element of the next and final phase. The function
sentenceFinder opens the previously described temporary file created by makeFile-
WithLineBreaks, and prints out every line that contains a keyword (this is later
optimised to save these lines in data structs rather than printing them). At last, a
validation function was created to check if the file-pointer created when importing
a file is a void-pointer. If it is, an error message is displayed, since it means that
the file does not exist in the directory. The function was developed for better code

43

readability and also to reduce the program size.

5.2.3 Post-interview phase

The post-interview phase is an expansion that largely utilises data from the gathered
from professional interviews. This phase indubitably represents the biggest leap in
the quality of the software solution, as it is here, that the solution really got tai-
lored to the needs of the user. This phase focuses on implementing the last ” Must
Have” requirement specification ”giving rating according to unique keywords”. The
late implementation of this central routine was chosen to be allocated in the final
phase, since trustworthy data was crucial to define a rating system to best suit the
needs of real-life recruitment specialists. The implementation of all the remaining
requirement specifications from the ”Should Have” section is also done here, since
their concrete functionalities are also highly dependent on the feedback the group
received. To meet the specification requirements the following functions were de-
veloped: ”contactRating”, ”gsortComparison” and ”outputInFile” | as well as many
functions from the previous phase were further developed and optimised to support
the current phases requirement specification. A struct-array named texts was devel-
oped to contain all the information of the cover letters, which makes the information
of the all applications more manageable and easier to access in the different functions.
sentenceFinder is now improved to also save the sentences in char arrays in texts,
and tackle them individually, using a dynamic char-array. In the keywordFinder
function, the amount of matches of a single keyword is not needed anymore, thus
it has been discarded. The contactFinder function now stores the found contact
information of the cover letter in a string arrays defined as struct-elements in texts.
contactRating now checks what form of contact information each cover letter has in-
cluded, and depending on the outcome the cover letters could either lose some points
or be completely disqualified. g¢sortComparison is a comparative function used in
combination with "qsort”; it takes two struct-pointers as function parameter, and
the ratings of the two text-structs are then compared in the function. ”Qsort” is
the algorithm used to sort every element of the struct-array containing information
for all cover letters before printing the results in the shortlist-file. This very file is
created by the function outputinFile, and contains a list containing a brief of all
qualified cover letters starting with the one with the highest score.

5.3 How does the software work?

In a relatively larger company’s recruitment process, the first step for a person hiring
is to go through all applications and cover-letters and to look for pre-determined
keywords appropriate for the given job, and save the ones that are most quali-
fied. The factors determining the level qualification have been selected by analysing
results from the groups’ research. The process of going through applicants’ docu-
ments is what the software is going to do for the job recruiter, specifically focusing
on cover-letters, as a lot of software for screening CVs has already been done, and
professionals are generally more appreciative for software which gives them extra
information, while leaving their usual workflow in-tact. According to our interviews
with recruitment professionals, cover-letters are an incredible, but unregulated and
muddy pool of data, which is not usually explored to a point of satisfaction. With
the group’s software solution, working with cover-letters can get much less tiresome,
as it presents a clear and systematic overview of all applicants.

44

In general terms, the software helps job recruiters sort through (a potentially large
number of) cover-letters in a quick and easy manner. When the user has received the
documents of all potential candidates, all the user has to do is place every text-file
in the program folder, start the program, and follow two very simple instructions
communicated via prompt messages in the terminal. The first one asks the user to
manually input a list of keywords to be searched for in each document in an order
of sequential priority.

PROBLEMS OUTPUT TERMINAL DEBUG CONSOLE

bence@Bences-MBP ~ % cd /Users/bence/Desktop/GitBackup/P1GRP2AAU/Version_1/
bence@Bences-MBP Version_1 % ./fase3_Mac_Version_1

Please enter keywords to store in file in sequential priority.
Disclaimer: max 20 words w/ spaces in between!
Write here: programming software education fulltime c++ strength weakness]]

Figure 18: The user-defined keywords are received via the terminal in a sequential
priority.

Various files will now be rated: The most prioritised keywords, if matched in a text,
will result in ten points, the next nine, and so forth until a two point threshold is
reached. In addition, every unique keyword will also give one point. If no email
is present, 10 points will be deducted. This also applies to phone numbers, but if
neither phone or email is detected, 100 points will deducted, technically disqualifying
the candidate. Thereafter, the maximum possible score is shown, and the user is
asked again, to input the minimum score, below which a cover-letter should be
dismissed (meaning it will not appear in the final shortlist file).

Please enter minimum score for application files (Max score is: 56):

Write here: 10f

Figure 19: The user-defined keywords are received via the terminal in a sequential
priority.

That simply, a text file called ”shortlist” is created, containing a brief for all cover-
letters that possess a rating above the user-defined minimum. The mentioned brief
consists of a total rating (that naturally also decides the sequence in which the briefs
are printed), a number of unique keywords used, and all of the relevant sentences
extracted, which contain a keyword (case and pre/suffixation are both ignored). Fur-
thermore, the files’ names, and all email addresses and phone numbers are extracted
for each cover-letter included.

45

© @ shortlist.txt - Open with TextEdit

File Name: text2.txt

Rating: 36 / 56

Unique Keywords: 4

Phone no. 1: 45343434

Email no. 1: john.donaldson@emailexample.com

sentences(4):

— programming:

With a BS degree in Computer Programming have a comprehensive understanding of the full i lifecycle for software
development projects.

- software:
With a BS degree in Computer Programming have a comprehensive understanding of the full i lifecycle for software
development projects.

— education:
The role is very appealing to me and I believe that my strong technical experience and education make me a highly
competitive candidate for this position.

- strength:
My key strengths that would support my success in this position include I have successfully designed developed and
supported liveuse applications.

File Name: text4.txt

Rating: 30 / 56

Unique Keywords: 3

Phone no. 1: 77335555

Email no. 1: example-HarrJones@pineappleexpress.com

sentences(6):
— programming:

Figure 20: The top-candidate from the text-file generated by the software.

After the rating, all documents scoring above or equal to the minimum score are put
into a document, shortlist.txt, accommodated by the content of the documents rele-
vant to the employers, namely: contact information, rating, file name and matched
keywords and the sentences they are used in. To elaborate on the workings of the
program, an example is provided:

A job posting, looking for software engineers with capabilities in C# has
been created, and 100 people have submitted their C'Vs and cover letters.
The recruiter uses some software to screen the CVs, and wants to use the
software described in this report for processing the cover letters. In this
case, it 1s especially important to the recruiter that applicants excel in team-
work. Relevant keywords to the offered position is selected by the job re-
cruiter to be: “Communication”, “Teamwork”, “C#”, “Community”, and
“Software”. The highest achievable score would in this case be 45, and the
recruiter only wishes to see applications scoring 30 or higher. A list of files
true to the conditions specified above will be created for the recruiter, provid-
ing them with a condensed and highly representative list of the candidates’
degree of optimality.

It is worth mentioning that, the more keywords recruiters provide, the more precise
and fulfilling the results will be. Furthermore, simulatory exercises are done consis-
tently throughout the project. This is in order to continue testing, troubleshooting
and to promote further progress. Throughout the iteration process, various test files
are continually run with a mix of consciously chosen keywords. In addition various
edge cases are investigated to evaluate and further test the product for issues that
need correcting. The process of coding software and associated functions will be
described more thoroughly in the next chapter.

46

5.4 Implementation

This section is provides insight to the development of the final program by showing
the implementation of the concepts, ideas and specifications previously discussed.
The thought-process behind the development of the different functions will also be
elaborated on. The procedure of developing the program was split into multiple
phases; the achievability phase, the essentials phase, and the post-interview phase
(a thorough description of each phase can be found in the Design section). In each
phase, a collection of requirement specifications were implemented in the form of
individual routines. Each routine has been developed whilst being aware about its
complexity, structure, efficiency (big-O), as well as overarching compatibility. This
section takes a closer and more detailed look at a few smaller functions in their
entirety, as well as snippets from some of the larger functions. These snippets are
all exclusively taken from the final prototype of the program (version 1.0).

5.4.1 Pre-processing units

The program makes use of the following C libraries by using #include C directive:
- stdlib
- stdio
- string

The libraries employed in the finished program are exclusively C-language standard
library functions. The inclusion of the mentioned libraries gives access to various
functions enabling usage of input and output of data, utility functions like ”gsort”
and "malloc”, and functions used for modifying strings, such as ”strcasestr” and
"strepy”.

The program also makes use of symbolical constants by using #define C pre-processor
directive. The use of symbolic constants enables tweaking certain aspects of the code
by changing multiple variables’ predefined values by simply changing a single num-
ber at the top of the source code. Additionally, working with symbolic constants
also makes the source code more readable. Some examples of symbolic constants
are: a constant for the maximum length of an extracted sentence, a constant for the
number of emails or phone numbers that should be stored for every text file, and a
constant for the maximum length of a word.

5.4.2 Organising data

To store data in an organised and manageable manner, data structures (structs) were
chosen to be implemented in the final prototype of the product. At the starting
point of the development process, none of the developers had knowledge about
structs, as it was a subject taught in one of the final lectures in the imperative
programming course. For this reason, early versions of the product were storing
and passing data through numerous arrays. Data such as keywords, sentences, and
contact information, were consequently stored in different arrays. In comparison
with the code with structs implemented, the earlier iterations could quickly become
disorienting to work through, and confusing to make changes in. Due to the lack of
an ”object-oriented programming”-like system, resolving errors were also much more
challenging. Subsequently to the lectures about structs, it was almost immediately

47

decided that their inclusion was a main priority for future iterations. In the final
version of the software, a struct is used to collectively store all data relating to each
text file individually. Namely, rating, number of keywords, number of sentences
with keywords, file-name, email(s), phone number(s), and the identified keywords
and their respective sentences in the file. For every single text, a new instance of
this struct is put into a struct array. The array is defined in the main function of the
software alongside other functions. Some of these functions take the struct arrays
as input parameters, and use/manipulate members of the structs in ways described
in the subsections below. Typedef is used for easier access. A snippet of the struct
used in the function is presented below:

rating;

keywordCounter;

sentenceCounter;
filenamel

keywords [
sentences [
emaill
phonel

} text_file;

Figure 21: Data structure used in product.

5.4.3 Main function

As previously mentioned, the main function predominantly consists of function calls.
This allows for better readability of the source code. Generally, it is expected from
a main function, that it provides a satisfactory overall picture of the program’s
functionality without too much clutter. The main function starts by dynamically
allocating memory for an struct-array called tezts via malloc. This struct-array con-
tains variables to store the information waiting to be extracted from cover-letters.
This can be seen on figure 22, in which case the number of texts is defined by a
symbolic constant named TEXT_NUM. If the memory cannot be allocated, an er-
ror message is printed, and the program is closed, otherwise the program continues
to run and calls the makeFileKeywords function. The makeFileKeywords function
creates a file containing user-defined keywords entered through the terminal. Af-
terwards, the functions makeFile WithLineBreak, contactFinder, readFileKeywords
are run via a for-loop, until the condition is equal to the constant TEXT_NUM.
Firstly, makeFile WithLineBreak removes punctuation and creates a line-break ev-
ery time it spots a punctuation symbol, and secondly it exports the edited file as
a temporary file. As formerly stated, this temporary file is overwritten with every
new call. Consequently, contactFinder extracts contact information from the cover
letters, and readFileKeywords puts keywords from a keywords.txt file into a string
array, and calls other functions. The functions contactRating and outputinFile are
only called once. contactRating checks each cover letter for contact information, de-
pending on the severity of the missing contact information a score penalty is applied
accordingly. outputInFile outputs the extracted text-based data into shortlist.txt as
a ranked list with information over all the cover letters, that have scored more than
the user-defined minimum score. Lastly, via free the dynamically allocated memory

48

for the array of structure texts is deallocated to make space for new data in the
array. Lastly, a message is printed in the terminal if all operations have successfully
been executed.

text_file *texts = malloc(() * (text_file));
if (texts ==

{

printf("Memory could not be allocated.\n");
exit(EXIT_FAILURE);

Figure 22: malloc - Dynamical data allocation.

5.4.4 makeFileKeywords

makeFileKeywords is the first function called during the run-time of the program.
This function is in charge of receiving user-inputted keywords, playing a central
part in the algorithm’s sorting process. The function opens a file - keywords.txt - in
write-mode, creating a file pointer. Next, the validation function is run to confirm
that the file exists, and the user input is read via fgets, which looks at the user-input
and puts it into a char array (string), data, defined at the top of the function. The
size of the array declared to be the symbolic constant named MAX. MAX simply
represents a large number that is able to tackle edge-cases. The content of the
array is then put into keywords.txt via the function fputs. A snippet of the full
makeFileKeywords function can be seen here:

makeFileKeywords()
data[MAax];

FILE *keywords = fopen("keywor
validation(keywords);

printf("\n

printf(

pisclai

ftgets(data,
fputs(data, keywords);

d successfully.\n\n");

Figure 23: makeFileKeywords.

The following functions in main are all executed within a for-loop, making them
process all of the cover-letter text-files: makeFile WithLineBreaks, contactFinder,,
and readFileKeywords. The loop is run until the integer, i, used for determining
which file number is processed, is equal to the defined symbol, TEXT NUM, which
is the number of applications imported.

49

5.4.5 makeFileWithLineBreaks

In general terms, makeFile WithLineBreaks creates a temporary file, removing un-
necessary symbols, and replaces periods with line breaks. This temporary file is used
in later functions, as it enables the possibility of identifying and storing individual
sentences. More specifically, the function takes the earlier mentioned file number
and a file with a not yet specified name as parameters. The process of defining the
name of the files is also done in this function. First, char array fileNameFormat is
initialised. The formats of the file names is Text *integer placeholder™ .txt. The char
array named fileName is also defined, though only by its size, which is the size of file-
NameFormat. The mentioned char arrays are then used as parameters in snprintf,
putting the string fileNameFormat into fileName, where the integer for the place-
holder in the string is the file number parameter ofmakeFile WithLineBreak’ . The
combination of these functions results in file names such as "textl.txt”, text2.txt”,
etc. This string is then via strcpy, copied into the earlier mentioned struct-array in
the filename member at the respective index. A snippet of the while-loop replacing
periods with newlines, and removing unnecessary symbols are displayed below:

while (fgets(input, , text) 1=

i = @; input[i] != '\@'; i++)

flag = @;

if (input[i] = '.")
{
input[i + 11 = '\n';

1
j=8; J < 13; j++)

if (input[i] == punctuation[j]}
{

flag = 1;
break;

if (!flag)

I
1

output [outputChar++] = input[il;

Rl
x

Figure 24: makeFileWithLineBreaks.

A file with the recently created name will now be opened, and the validation function
will be called. Also, two char arrays named Input and Output, sized by the MAX
symbol are defined. If no errors occur in the validation function, a while-loop running
until fgets until returning NULL will be run, thus iterating over every line in the

20

text-file and copying the sentences into the string, input. Within the while-loop,
a for-loop is called, comparing every char in the given sentence to every char in a
previously defined char array, containing punctuations wished to be removed from
the text, enabling the workings of functions called later on. Whenever a char is equal
to a punctuation, a boolean named flag, assigned the value true/one, and thereby
breaks out of the for-loop. An if-statement will add the chars from Input to Output
if the boolean is false (0 in C-language). Another if-statement before the for-loop
will replace the iterated char with a new line, if equal to a period. The text file is
then closed and the Output is copied into the temporary textfile via strepy. Lastly
a success message is printed.

5.4.6 contactFinder

As the name of the function suggests, contactFinder, identifies phone numbers and
emails in the text files and copies those into the struct-array at the index of i, rep-
resenting the file number. Emails are copied into the email member of the structs,
which are string arrays, and phone numbers are copied into the long int arrays
named phone. The members storing contact information are two-dimensional ar-
rays, as it allows storing multiple emails and phone numbers, though no more
than four of each as a cover letter is unlikely to contain more. The length of
the arrays are defined in the struct with the symbolic integer constant named
PHONE_OR_EMAIL_LENGTH. The function use file number and text file the same
way makeFileWithLineBreak does, and also creates the name from file number and
file name format accordingly. After this, the text-file is opened in read-mode. Two
while loops are present: one for identifying phone numbers, and one for identifying
emails. These could definitely be combined to a shorter function, but are not due to
a lack of time and low-priority in the development process. Both of the while loops
use " fscanf” to copy strings from the file into the char array defined above it, named
full_text. One string at a time, they are examined by if statements and functions
from the string.h library.

An if-statement will be true if the length of examined string are 8 or 10 charac-
ters. If true, the phoneNumber variable of type integer is set equal to the return
value of strtol, a function that confirms whether or not a string is numeric. strtol ex-
amines s string one char at a time, until a non-digit char or a limit, provided as input
parameter, has been reached - in this case, the limit is 10. Another if-statement - if
true- copies the phone numbers into the array of phoneNumbers in the struct-array
at the index of file number and at the index of phoneCounter in the phoneNum-
ber array. phoneCounter is an integer functioning as a counter and is incremented
by one every time a phone number is identified. The while-loop identifying phone
numbers is shown here:

51

while (fscanf(text, "%s", fullText) !=

if (strlen(fullText) == 8 || strlen(fullText) == 10)

I
L

phoneNumber = strtol(fullText, &point, 18);

if (phoneNumber >= 10000000)

{
texts[i].phone[phoneCounter] = phoneNumber;
phoneCounter++;

Figure 25: contactFinder - identifying phone.

The truth value of the if-statement handling mail identification is dependant on the
return value of the function strrchr. The function examines if a string contains the
char 7@”. If the statement returns true, the examined string is copied into the a
string array named email at the index ofmailCounter - an int declared above the
loop, which is increased by one whenever a mail is identified. A for-loop outside of
the while-loop is examining every mail found and replacing periods at the end of the
emails with empty spaces (if there are any). Within this for-loop, the identified mails
are copied into the char-array of emails in the struct at the index of the momentary
file number, via strepy. The while-loop identifying emails is shown in the snippet
underneath:

while (fscanf(text, "%s", fullText} !=
{
if {strrchr{fullText, '@"'})
{
(maillmailCounter], fullText);

mailCounte r++;

j = 8; j = mailCounter; j++)

maillLength = strien{mailljl};
if (maillj]l[mailLength = 1] == '."'})

mail[j] [maillLength — 1] = "\@';

(texts[il.emailljl, mailljl);

Figure 26: contactFinder - indentifying mail.

52

5.4.7 readFileKeywords

The readFileKeywords function is one of the larger functions included in the prod-
uct. It plays a critical role in the core purpose of the product, as it is handling the
process of finding keywords and the sentences they are used in, as well as rating
the text files. The function does so, by the help of the functions called within the
function itself, namely keywordFinder and sentenceFinder. Both functions read the
temporary text file created earlier by makeF'ile WithLineBreaks, in which no unnec-
essary symbols are present, and all sentences are separated by line-breaks, which is
notably useful for sentenceFinder. Before calling mentioned functions, the file key-
words.txt is opened in read-mode, and a while-loop counts the number of keywords
in the text file by counting the amount of spaces, since the keywords in the file
are separated by those. The amount of keywords is then stored in the int pointer
totalKeywordCount, a parameter in the function. Two other parameters, namely
"fileNumber” and "texts” are also present. Next, a for-loop inserts the keywords
in keywords.txt in the string array named keyword, iterated by a for-loop, in which
keywordFinder and sentenceFinder are run.

keywordFinder looks for a string in a text-file and returns the value, one, if the
string was found. keywordFinder, has two parameters: a string representing the
keyword to scan for, and an integer-pointer used as a boolean for determining if the
keyword is found in the text file. In the function, a while-loop scans each string
and puts it into the fullText char array. In the for-loop, an if-statement increments
the integer keywordNum by one, each time the iterated string is determined to be
the same as the keyword examined. This is achieved by the use of strcasestr, a
function comparing two strings without case sensitivity, returning one if the two
compared strings are the same. strcasestr is a function only available on MacOS,
and therefore, a case-sensitive alternative, strstr is used in the Windows build. The
while-loop determining if a keyword exists in the text can be seen here:

while (fscanf(text, "%s", fullText) !=
{

if {strcasestr(fullText, keyword) = @)
{
keywo raNum-++;
1
£

}

if (keywordNum > @)
{

xkeywordExists = 1;

}

Figure 27: keywordFinder.

When keywordFinder has been called, a for-loop calculates the rating of the struct
in the struct-array at the index of fileNumber. The first keyword in the array gives
ten points, next eight, and so forth, until the the minimum of two has been reached.
For every unique keyword matched, an additional point is given. The points are
stored in the respective structs’ rating members.

23

sentenceFinder is run after the rating process, parsing through each sentence in the
text, looking for the existence of a keyword, and copies both sentence and keyword
into two separate string arrays in the struct if true. In this function, a while-loop
is running until the function fgets no longer returns a string. fgets examines the
file text_temp.tzt line by line, which is why periods were earlier replaced with line-
breaks, as each line in text_temp.tzt corresponds to a sentence from punctuation to
punctuation in the original text file. In the while-loop, an if-statement scans the
line for the keyword taken as input parameter, and is true if the keyword is found in
the sentence. As in keywordFinder, this is done by the function strcasestr. strcasestr
returns the string found in the line and returns nothing if nothing was found, and
this is why the if-statement is true if the return value of strcasestr is greater than
0. When the if-statement is true, strepy is used to copy the line into the struct
member sentences (a string array), at the index of fileNum in the struct-array, and
at the index of the iterated struct’s sentenceCouter member. The sentenceCounter
of the struct is increased by one, for each iteration of the while-loop. The keyword
is stored in the keyword member of the struct (also a string array) at the index of
fileNum in the struct array, and at the index of the same struct’s sentenceCounter
member subtracted by one. Snippet of the while-loop identifying and adding lines
and keywords to struct:

while (fgets{line, (line), text))

{

if (strcasestr(line, keyword) > @)

-
1

(texts[fileNum].sentences [texts [fileNum].sentenceCounter++], line);
(texts[fileNum].keywords [texts [fileNum].sentenceCounter - 1], keyword);

Figure 28: sentenceFinder - while-loop.

Looking at the software’s two functions sentenceFinder and keywordFinder, one
might realise, that the keywordFinder could be considered obsolete, if the variable
from keywordFExists was moved into sentenceFinder, and the for-loop taking care of
the rating process, was moved under the function call of sentenceFinder. This is
because the two mentioned functions are very similar in their workings, and both
parse the texts in search of keywords. This will be discussed in future sections.

5.4.8 contactRating

In main, when the functions, makeFileWithLineBreaks, contactFinder and read-
FileKeywords, have been called and ran through the formerly described for-loop,
the function contactRating is called (outside of the loop). contactRating is a rela-
tively small function, and is part of the rating system of the software. contactRating
iterates each text file and deducts ten points if no phone number is found in the
respective text. Ten points will also be deducted if no email is found, and if no email
or phone number is present in a text, one-hundred points will be deducted, techni-
cally disqualifying the candidate. The function takes the struct array of text-files
as a parameter, and examines each text within a for-loop. The for-loop runs until
the integer j - initially having a value of zero - is bigger than the symbolic constant

54

TEXT_NUM. Within the loop, there are three if-statements. The first statement is
true, if the length of the mail is smaller than five. The mail examined is the first
element in the string array named email, at the index of j in the struct-array. A
length smaller than five is adequate, as no mail would be shorter than five characters
in length. An email consists of at least one character, followed by ”@” and lastly a
website domain of at least three characters, e.g: a@b.cd. If the if-statement is true,
ten points will be deducted from the member named rating in the struct array at
index j. The next if-statement is true if the phone number of the same struct as
before at index zero is equal to zero. This is because the phone number will be 707,
if no phone number is found in contactFinder. If true, ten points will be deducted
the same way as before. The last if-statement, is simply the two if-statements,
spoken about above, combined in one argument with the logical expressions of two
“and” signs. If this statement is true, one-hundred points will be subtracted from
the rating member the same way as the other instances. One might wonder how
the index of zero in the arrays of phone numbers and emails, when determining if
no mail or phone number exists, might be sufficient. This is simply because any
contact information - if found - always will be put in the first slot of the mentioned
arrays, and it is therefore not necessary to examine the other slots. Snippet of for-
loop determining rating from identified phone numbers and emails can be observed
below:

for | j=0;] = HINE Y

if (strlen(texts[jl.emaill@]) < 5)
{
texts[jl.rating -= 18;

1
I

if (texts[j].phone[@] = @)
{
texts[jl.rating -= 18;

1
I

if ((strlen(texts[jl.email[@]} < 5) && (texts[jl.phonel[8] == @))

{

texts[jl.rating -= 108;

1
I

Figure 29: contactRating.

5.4.9 outputlnFile

The last function called, concluding the development-phase of this project, is the
outputInFile function. This is also one of the longer functions in the product, and
what it does is to great extent already explained in the name itself; It outputs the
data found in the text files and stored in the structs, in a file named shorlist.txt.
This is what users of the product are going to find useful. The function takes the
integer, totalKeywordCount and the struct array as parameters. The first step in
the function is to open a file named shortlist.tzt in write mode. This is done to
create a completely empty file every time the product is run, and is necessary if
the software is used multiple times. When the file has been opened in write mode
and in this fashion created, the file is closed again. This is done to remove the
previous data, which could be left over from previous operations. Next, the file is
opened in append mode. The same algorithm to calculate the ratings of the text
files in terms of keywords, described in the contactFinder section, is run for all

95

keywords entered by the user at the start of the program. This is done to calculate
the highest achievable score if all keywords are matched to a file, and both email
and phone number are identified. A snippet of the for-loop calculating mazxPoints
can be seen in the following figure:

or [i =08; i< totalKeywordCount; i-++)

maxPoints += 1;
if (i < 8)
{

maxPoints += 18 - 1i;

1
r
e

lse
{
maxPoints += 2;

lease enter minimum score for application files (Max score is: %d):\nWrite here: ", maxPoints);
&minPoints);
printf("\n"};

Figure 30: outputInFile - calculating maximum score.

The user is now asked to enter a minimum score for the application files and is, for
the purpose of giving context, presented with the highest achievable score. Only
text files with a score equal or above the entered minimum score will be eligible
to be output in the shortlist.tat file. The sorting algorithm g¢sort is now used in
cooperation with the custom comparison function named gsortComparison, to sort
the struct-array from highest to lowest rating. The comparison function straight-
forwardly returns one, if the rating of text one is bigger than text two, and returns
negative one if the opposite is the case. If none of mentioned instances are the case,
zero is returned.

The following part of the function is consisting of various methods of modifying
strings via strcpy and strcat, as well as some outputting in the char array, text-
ToPrint, done by snprint. A for-loop iterating each struct-array is used to output
the contents of each text file, one at a time. To iterate through the structs, the
for-loop uses the integer i, defined to have the value of TEXT_NUM at the initial-
isation of the loop. For every iteration ¢ is decremented by one. In the loop is an
if-statement, parenting all of the string modifying and outputting. The statement
is true if the rating member of the struct-array at the index of ¢ is larger or equal
to minPoints - the integer storing the user-defined minimum value of the minimum
scoring threshold of the applications. This ensures, that the contents of text files
with a score below the minimum, is not outputted into the shortlist file. At the
starting lines of the for-loop, within the if-statement, the char-array, textToPrint
with the length of the symbolical constant PRINT_LENGTH is defined. snprintf is
used to output filename, rating, maxrPoints and keywordCounter into the char array
in a readable fashion. Below, a snippet shows the for-loop iterating each element
in the struct-array containing the contents of the text files and copying file name,
rating and amount of keywords into textToPrint. The for-loop described below the
snippet, copying phone numbers the string to print is also shown:

o6

1> 0 i--)

if (texts[il.rating == minPoints)

{

textToPrint[|H
(textToPrint, ; "\nFlle Nal atin f Uniqu
texts[il.filename, texts[il.rating, maxPoints, texts[i].keywordCounter}

phoneTemp [50];
for { j=08;] = 4; j++)
{
(phoneTemp, "");
if (texts[i].phone[j] > @)
{
(phoneTemp, 58, "P no. n", j + 1, texts[il.phoneljl}
(textToPrint, phoneTemp);

Figure 31: outputInFile - For-loop for iterating over files, and copying phone num-
bers into textToPrint.

Next, a for-loop is used to place each phone number located accompanied with its
index into a temporary char array named phoneTemp. The phone numbers are only
be copied into phoneTemp if they are bigger than zero. snprint converts the long
int, phone, and the integer j used for indexing, into chars and copies them into
phoneTemp. This is crucial, as strcat on the next line copies phoneTemp into text-
ToPrint, and only is capable of handling strings. Another for-loop executes the same
procedure for the emails, though using emailTemp as the temporary file to copy into
textToPrint. The char arrays, as mentioned, copy the strings into textToPrint via
strcat, which inserts the text at the end of a string. A following for-loop, also via
strcat, copies the keywords, with their sentence underneath. All of the loops use
the earlier mentioned 7 as index in the struct array, and j as index in the array
of phone numbers, emails, keywords and sentences. The last function call in the
for-loop is fputs, which copies the textToPrint char array into shortlist.tzt. textTo-
Print only contains the contents of one file at a time, which is why the for-loop is
ran TEXT_NUM times. Lastly, the file is closed and a success-message is printed.
Image showing the process of copying sentences and keywords into textToPrint, as
well as outputting textToPrint into shortlist.txt is shown below:

j = 8; j < texts[i].sentenceCounter; j++)

(textToPrint, "- ");
(textToPrint > il keywords[j1);
(textToPrint, " ;

texts [il.sentences[jl[strlen(texts[il.sentences[j1) - 1] = '.’
texts [il.sentences[jl[strlen(texts[il.sentences[j1)] = "\@';

(textToPrint, texts[il.sentences[jl);
(textToPrint, "\n\n"};

1
I

textToPrint[strlen(textToPrint) - 1] = '\@';
(textToPrint, "
fputs({textToPrint, shortlist);

Figure 32: outputInFile - copying keywords and sentences to textToPrint, and out-
putting textToPrint in shortlist.txt.

o7

5.4.10 validation

A short function, which is used throughout the entirety of the product whenever a
file is opened, is the validation function. It takes a file pointer as input parameter,
and examines if the file is equal to NULL. If the condition statement is evaluated to
be true, an error message is printed and the ezit function is called. As mentioned,
considerations and choices made afterwards and during the product development
will be discussed in the following sections.

validation(FILE *file)

if (file ==

{

printf("Unable to locate file.\n");
exit(EXIT_FAILURE);

Figure 33: Validation - checks if a file exists.

o8

6 Discussion of the product

This section encapsulates the discussion of the final product in relation to the prod-
uct requirement specifications, the limitations the group has faced, and the process
of testing. Additionally, the future of the program solution will also be elaborated
on.

6.1 The final product compared to requirements

The final product resulted in successfully fulfilling all requirements in MoSCoW's
"Must Have” and ”Should Have” categories, but unfortunately very few of the fea-
tures shown in ”Could Have” and ”Wont Have” sections were implemented at last.
Considerations were made by the group about which features were most important
as formerly displayed in the Requirement specifications section. As explained in the
Design section, the "Must-have” routines were developed at first, as they were the
most crucial parts for making the software usable. ”Should Have” features were
made next and most of these were accomplished. The ”Could haves” were barely
achieved, but still contained some features that would be necessary, should the pro-
gram be published for use.

6.1.1 MacOS and Windows builds

Throughout the development process, the group had experienced a rather large
number of situations, in which hardware-limitations lead to less-than-optimal solu-
tions, or entirely cutting an intended routine. At last, the group decided to split
the program up into two builds, one for MacOS, and one for Windows - the only
major difference being the inclusion of the ”strcasestr” function. In short, the
“strcasestr”-function, only works on MacOS due to a missing system-package on
Windows, though the parent function “strstr”, is available on both MacOS and
Windows operating systems. “Strcasestr” is a function used when scanning for sub-
strings. In the group’s product solution, it is used for scanning keywords without
case-sensitivity and determining in which sentences various keywords exist. Sadly,
the inclusion of "strstr” in the Windows-build largely kneecaps one of the main
selling points of the product, which is being able to identify words despite extra
characters, suffixes, prefixes, etc. Discussions were held about whether or not a
workaround should be made making it work on both MacOS and Windows, but ul-
timately it was decided that the software would only be fully optimised for MacOS,
as a solution would require too much time to implement. Naturally, this would not
be the decision made by the group if the software was supposed to be published for
common use, and was mainly based on the time span remaining for completion of
the project, as various other features of the program was.

6.1.2 File processing

The finished product of this project will, as mentioned in previous sections, only be
able to take .txt files as input files and the files must have a specific name format,
namely ”text” followed be the index of the file in context to other files. An example
could be: "textl.txt” or "text2.txt”. The number of text files to be imported has
not been made dynamic either, meaning that the number of files, must be defined
in the source-code of the software beforehand. Mentioned features are both seen
in the product’s MoSCoW model, in the ”Wont Have”-section. The reason why, is

29

touched upon in the Requirement specifications section of the report. It was decided
not to implement these features, because it was difficult and time consuming, and
the abilities of the developers were limited, as well as the time given. For future
work, these features would be implemented, as it would be crucial for employers
to work with different file formats. It is debatable whether or not the group, had
they been able to have a second attempt at the project, should have prioritised the
features higher, because they, as mentioned, would make or break a job recruiters’
desire to implement the software in their hiring processes.

6.1.3 Tests

Due to limited amount of time, no satisfactory user-focused tests of the software
was performed. The group discussed if it was important to include testing in the
future. Since the program is to a large extent based on the customers’ feedback
and wishes, the group concluded that for the future, it is crucial to include user-
testing. These tests should have been done in collaboration with people who could
act representative for our demography, see our persona for instance. During these
tests, they would have been presented with the software and asked to perform specific
actions, for example search for the keywords ”programming” and ”Python” in all
given texts, or find out which of the given motivational letters is the best with
their own set of sequentially prioritised keywords. While the individuals attempted
to solve their assignments, their interaction, comments, and non-verbal reactions
would be monitored, and be collectively analysed for future development of the
program. This routine would have been done within the additional guidelines of the
“think-audibly test“ [26], which is a method commonly used when testing websites,
user-interfaces, and a wide range of other digital solutions.

6.2 Future work on the product

If the project was to be worked on in the future, it could be relevant to conduct
a marketing analysis. Briefly, during a marketing analysis, a wide range of tools
are used to analyse how much potential a given company’s upcoming product is ex-
pected to have on the respective market. In this case, the marketing analysis could
for instance include the model: Porters Five Forces framework. This model has its
main focus on visualising the five most decisive elements of a products competitive
environment. They are categorised as "buyer bargain power”, "threat of substitu-

” o

tion”, ”supplier bargain power”, "threat of new entrants”, and ” competitive rivalry”.

From Porters Five Forces Framework, in context with this product, it would be
most relevant to make a deeper analysis based on the "buyer bargain power” and
predominantly ”competitive rivalry” and ”threat of substitution products”. These
forces are important to analyse and understand, and has been chosen due to the
following rationality:

The product and marketing has to be shaped towards what the markets buyers want,
therefore the buyers has the most power of the market. The competitive rivalry is
the second most controlling force on this market, if the competitors service and pric-
ing is better, the buyers are more likely to choose them. The threat of substitution
is the third most controlling force, because there are other solutions to our problem
than a software. These other solutions can take buyers away from the market, and
therefore has to be taking in consideration as well. With this understanding of the
market, one can take that in consideration with the development and marketing of

60

the product, so it will be receive as best as possible. That is if the program were to
be deployed to the market.

6.2.1 Other considerations

This subsection discusses what other considerations, the groups had for this product
in the future, that were not mentioned in ”The final product compared to require-
ments” or the "MoSCoW?” sections.

Firstly, during the very first iterations of the program, there were numerous (seeminly
random) integer parameters as function-parameters instead of symbolic constants.
The program was edited in the last phase to have symbolic constants instead of
these variables. For future work, it would be beneficial to start with making sym-
bolic constants to save the editing time, and it would not effect the program as
heavily as it did in this project.

In the same matter as using symbolic constants, the group learned about the ”mal-
loc” function in the later part of the imperative programming course. Since the
program is so thoroughly based on string-arrays, it would definitely make the pro-
cess of creating the program a lot faster to use "malloc” from the start. It was also
an aspect, that made the editing time slower than it possibly could have been.
Another consideration the group had was allowing more than twenty keywords at a
time, and conjugation of the keywords. The program, it’s final iteration, can con-
tain up to twenty keywords with each of them having a maximum length of fifty
characters. The reason it is set to those numbers are, as mentioned in the Design
section, that it is unlikely for the user to input more than twenty words that each
are longer than fifty characters. Though, if it were to happen, then the program
would run into an error. For future development, rewriting/optimising some of the
code to tweak the limit on keywords user-defined could be advantageous for escaping
that kind of error. In continuation, being able to write a keyword in one conjugation
and only searching for that tense is also limiting. If the program was to be worked
further on, then making a function that would automatically conjugate the given
keywords in every tense and search for them, could be ideal. On the grounds of that,
being more accommodating to different conjugations could catch good candidates
that used keywords, just in a different tense than the user inputs tense. Some could,
however argue that when recruitment professionals work with keywords, they only
tend to use about 5-10, so in the majority of cases, the user should not run into the
problem of using an illegal amount of keywords.

Other considerations after looking at the finished product and evaluating the quality
of the code, a couple of ways to improve the software by simplifying and merging the
code were discovered. The code is working, but with some improvements it could
run even faster, and the complexity of the functions could be reduced, rendering
it more efficient. As mentioned in the Implementation section for instance, while-
loops could have been merged in the contactFinder function. The keywordFinder
and sentenceFinder functions would not both be necessary either if the some of
the mentioned variables and loops had been moved around - this is described more
thoroughly in the Implementation section. The root cause of why the mentioned
discoveries have not been acted upon is, once again, the factor of time. These as-
pects would definitely be worked on if future work on the project would come into
play. Nonetheless, the software works as intended, a the small final adjustments and
patches on the software were not the highest priority.

61

Lastly, it was also considered to continue working with another programming lan-
guage if the program was to be further developed. Although it was a requirement for
the software solution of the project be written in C, Python would make a lot more
sense for the group to work with in the future. That is, because Python handles
strings vastly differently than C does. In C-language, one needs to allocate memory
in the sting arrays to have enough space for the stings/characters. That isn’t needed
in Python, and therefore it is also not needed to free the data inside of the arrays.
It will save time in writing to program, which could be used on implementing more
and better quality features and initiatives. Python also has several cross-platform
libraries, which would solve a great deal of the current OS-related limitations.

Further reflection on the group’s project organisation, programming experience, and

cooperation can be read in the attached ”Process analysis for P1 - Group 2, SW1”-
document.

62

7 Conclusion

Overall, the group has created a software solution to the proposed problem state-
ment, which was designed, and specified to fulfil a real world problem that re-
cruitment specialists face daily. To ensure quality and relevancy - expert-opinions
were incorporated, extensive online research was conducted, and countless theoret-
ical, and implementation ideas were thoroughly discussed and tested. This pro-
cess successfully utilised all aspects of the group’s current coding-competencies,
and project-organising capabilities. Amongst numerous programming-related mod-
els and methods, flowcharts/diagrams, and the construction of a UML Sequence
diagram was proven to be most fitting with the group’s current implementation
framework. The approach of top-down programming in combination with an itera-
tive workflow strengthened the group’s general ability to fragment the problem into
smaller bites, and solve the individual sub-problems in smaller groups. This led to
a smooth cycle of defining and implementing new ideas.

The product acts as a commendable contribution to a field, in which human re-
sources are still abundantly consumed by a long list of monotonous activities, that
at the end of the day could, and eventually will be automatised by software. It is,
however, essential to understand that the employed software, at the end of the day,
still enriches a human experience, rather than taking the human element out of a
job. Human resources is a field that works intimately with other people so rather
than taking over a section of work, the group has conceived a product, that provides
new possibilities, and expands the degree of proficiency for a recruitment specialist.
In the meanwhile, the problem statement was answered, as the product successfully
streamlines a line of operations in the field of recruitment, provides valuable data
in an easily digestible and compact format, and makes it easier for the employer
to identify the most optimal candidates for jobs with specific requirements. It is,
however essential to express, that the product presented is merely an early pro-
totype, which would in reality only represent a snippet of the full-scale solution.
Nevertheless, even as an early prototype, the program already possesses a variety
of routines and ideas, which none of the competing software solutions do, due to
the developer-team working so close with the people who experience the problem
themselves. Thus, the problem statement is answered, and the first semester-project
of the group is concluded.

63

8 Figures

List of Figures

— = O 00 ~J O Ui W N~

— O

12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31

32

33

The phases of SDLC [22].
The Iterative Incremental Model [25].
Structure Chart for function contactFinder.
Salience Model Diagram [16].
Response to Question 1 in the survey.
Response to Question 2 in the survey.
Response to Question 2.1 in the survey.
Response to Question 3 in the survey.
Response to Question 4 in the survey.
Response to Question 5 in the survey.
The constructed persona, Peter Johansen. This picture was created

by an AI [28], thus does not represent a real individual, nor is a

subject to copyright.o
The MoSCoW method.
Flow-diagram for the main segments of the program.
UML Sequence Diagram to the finished product.
Flowchart showing the keywordFinder function.
Pseudo code for the readFileKeywords function.
Route-diagram to the systematic implementation of ideas.
The user-defined keywords are received via the terminal in a sequen-

tial priority.o
The user-defined keywords are received via the terminal in a sequen-

tial priority.o
The top-candidate from the text-file generated by the software.
Data structure used in product.
malloc - Dynamical data allocation.
makeFileKeywords.o 0oL
makeFileWithLineBreaks.
contactFinder - identifying phone. L.
contactFinder - indentifying mail.
keywordFinder.
sentenceFinder - while-loop.o
contactRating. Lo
outputInFile - calculating maximum score.
outputInFile - For-loop for iterating over files, and copying phone

numbers into textToPrint. L.
outputInFile - copying keywords and sentences to textToPrint, and

outputting textToPrint in shortlist.txt.
Validation - checks if a file exists.

64

45

45
46
48

9 References

References

[1] Linda Ahrenkiel. Mized methods. 2020. URL: https://laeremiddel . dk/
viden-og-vaerktoejer/videnskabsteori/metoder/mixed-methods/. (ac-
cessed: 11.11.2021).

[2] Camel Case. 2021. URL: https://en.wikipedia.org/wiki/Camel _case.
(accessed: 12.11.2021).

[3] Andrew Fennel. Andrew Fennel. 2021. URL: https://uk.linkedin.com/in/
andrew-fennell-67520332. (accessed: 12.11.2021).

[4] Andrew Fennell. How long do recruiters spend looking at your CV? 2021. URL:
https://standout-cv.com/how-long-recruiters-spend-looking-at-cv.
(accessed: 12.11.2021).

[5] GeeksforGeeks. Functional vs Non Functional Requirements. 2021. URL: https:

//www.geeksforgeeks.org/functional-vs-non-functional-requirements/.
(accessed: 15.12.2021).

[6] Jannes Innes. The CV Book 2nd edn: Your definitive guide to writing the
perfect C'V. Pearson, UK, 2012, p. 304. 1SBN: 9780273776611.

[7] Elliot B. Koffman Jeri R. Hanly. Problem Solving and Program Design in C.
Pearson, 2016, p. 144. 1SBN: 978-1-292-09881-4.

[8] Elliot B. Koffman Jeri R. Hanly. Problem Solving and Program Design in C.
Pearson, 2016, p. 169. 1SBN: 978-1-292-09881-4.

[9] Swatee B. Kulkarni. Intelligent Software Tools for Recruiting. 2021. URL: https:
//scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=13987
5C&context=jitim. (accessed: 12.11.2021).

[10] lucidchart.com/. What is a Flowchart. 2021. URL: https://www.lucidchart.
com/pages/what-is-a-flowchart-tutorial. (accessed: 12.11.2021).

[11] David Meshulam. Beat Oracle’s Taleo Applicant Tracking System (ATS). 2021.
URL: https://www.jobtestprep.com/taleo-applicant-tracking-system.
(accessed: 17.11.2021).

[12] Sara A. Metwalli. Pseudo-code 101: An Introduction to Writing Good Pseudo-
code. 2021. URL: https://towardsdatascience.com/pseudocode-101-an-

introduction-to-writing- good- pseudocode- 1331cb855be7. (accessed:
17.11.2021).

[13] Modern Applicant Tracking Software. 2021. URL: https://www.freshworks.
com/hrms/features/applicant-tracking/. (accessed: 17.11.2021).

[14] Oracle. Oracle Taleo Cloud Service Global Price List. 2018. URL: https://
www . oracle . com/us/corporate/pricing/taleo-price-1ist-2949065.
pdf. (accessed: 11.12.2021).

[15] Visual Paradigm. What is Unified Modeling Language (UML)? 2021. URL:
https://www . visual - paradigm. com/guide/uml -unified -modeling-
language/what-is-uml/. (accessed: 15.12.2021).

[16] pmStudyCircle. Salience Model to Analyze Project Stakeholders. 2015. URL:
https://pmstudycircle . com/salience-model -to-analyze-project-
stakeholders/. (accessed: 05.12.2021).

65

https://laeremiddel.dk/viden-og-vaerktoejer/videnskabsteori/metoder/mixed-methods/
https://laeremiddel.dk/viden-og-vaerktoejer/videnskabsteori/metoder/mixed-methods/
https://en.wikipedia.org/wiki/Camel_case
https://uk.linkedin.com/in/andrew-fennell-67520332
https://uk.linkedin.com/in/andrew-fennell-67520332
https://standout-cv.com/how-long-recruiters-spend-looking-at-cv
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1398%5C&context=jitim
https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1398%5C&context=jitim
https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1398%5C&context=jitim
https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial
https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial
https://www.jobtestprep.com/taleo-applicant-tracking-system
https://towardsdatascience.com/pseudocode-101-an-introduction-to-writing-good-pseudocode-1331cb855be7
https://towardsdatascience.com/pseudocode-101-an-introduction-to-writing-good-pseudocode-1331cb855be7
https://www.freshworks.com/hrms/features/applicant-tracking/
https://www.freshworks.com/hrms/features/applicant-tracking/
https://www.oracle.com/us/corporate/pricing/taleo-price-list-2949065.pdf
https://www.oracle.com/us/corporate/pricing/taleo-price-list-2949065.pdf
https://www.oracle.com/us/corporate/pricing/taleo-price-list-2949065.pdf
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://pmstudycircle.com/salience-model-to-analyze-project-stakeholders/
https://pmstudycircle.com/salience-model-to-analyze-project-stakeholders/

[22]

[23]

[20]
[27]
[28]
[29]

[30]

ProductPlan. What is MoSCoW Prioritisation. 2021. URL: https://www .
productplan.com/glossary/moscow-prioritization/. (accessed: 08.12.2021).

Schema. Person. 2021. URL: https://schema.org/Person. (accessed: 12.11.2021).

Ulrich Schild. How HR & Recruiters Actually Read Your Resume. 2021. URL:
https://www.linkedin.com/pulse/how-i-actually-read-your-resume-
ulrich-schild/. (accessed: 12.11.2021).

Systematic literature search. 2021. URL: https://library.au.dk/forskere/
systematisklitteratursoegning. (accessed: 11.11.2021).

Indeed Editorial Team. How To Find Keywords in Job Descriptions and Use
Them in Your Resume. 2021. URL: https://www. indeed . com/ career -
advice/resumes-cover-letters/finding-keywords-in-job-descriptions.
(accessed: 12.11.2021).

Svita Team. SDLC' Methodologies. 2019. URL: https://svitla.com/blog/
sdlc-methodologies. (accessed: 11.11.2021).

Jette Egelund Holgaard Thomas Ryberg Nikolaj Stegeager Diana Stentoft
Anja Overgaard Thomassen. Problembaseret lering og projektarbejde ved de
videregaende uddannelser. Samfundslitteratur, 2014, pp. 62—63. 1SBN: 978-87-
593-1878-2.

Transform hiring with our Corporate HR Software. 2021. URL: https://www.
zoho.com/recruit/corporate-hr-software.html. (accessed: 17.11.2021).

Tutorialspoint. SDLC - Iterative Incremental Model. 2015. URL: https://www.
tutorialspoint.com/adaptive_software_development/sdlc_iterative_
incremental_model.htm. (accessed: 11.11.2021).

UserDesign.dk. T@enke-hgjt test. 2021. URL: https://www.userdesign.dk/
usability-test/taenke-hojt-test/. (accessed: 09.12.2021).

Vervoe. Hire great people, every single time. 2021. URL: https://vervoe.
com/?ssrid=ssr. (accessed: 12.11.2021).

Phillip Wang. this person does not exist. 2019. URL: https://thispersondoesnotexist.

com/. (accessed: 16.12.2021).

Lauren Weber. Your Resume vs. Oblivion. 2012. URL: https://www.wsj.com/

articles/SB10001424052970204624204577178941034941330. (accessed: 17.11.2021).

What is ATS Software? 2021. URL: https://matchr.com/ats-software/
what-is/. (accessed: 17.11.2021).

66

https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
https://schema.org/Person
https://www.linkedin.com/pulse/how-i-actually-read-your-resume-ulrich-schild/
https://www.linkedin.com/pulse/how-i-actually-read-your-resume-ulrich-schild/
https://library.au.dk/forskere/systematisklitteratursoegning
https://library.au.dk/forskere/systematisklitteratursoegning
https://www.indeed.com/career-advice/resumes-cover-letters/finding-keywords-in-job-descriptions
https://www.indeed.com/career-advice/resumes-cover-letters/finding-keywords-in-job-descriptions
https://svitla.com/blog/sdlc-methodologies
https://svitla.com/blog/sdlc-methodologies
https://www.zoho.com/recruit/corporate-hr-software.html
https://www.zoho.com/recruit/corporate-hr-software.html
https://www.tutorialspoint.com/adaptive_software_development/sdlc_iterative_incremental_model.htm
https://www.tutorialspoint.com/adaptive_software_development/sdlc_iterative_incremental_model.htm
https://www.tutorialspoint.com/adaptive_software_development/sdlc_iterative_incremental_model.htm
https://www.userdesign.dk/usability-test/taenke-hojt-test/
https://www.userdesign.dk/usability-test/taenke-hojt-test/
https://vervoe.com/?ssrid=ssr
https://vervoe.com/?ssrid=ssr
https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/
https://www.wsj.com/articles/SB10001424052970204624204577178941034941330
https://www.wsj.com/articles/SB10001424052970204624204577178941034941330
https://matchr.com/ats-software/what-is/
https://matchr.com/ats-software/what-is/

	Introduction and motivation
	Methodology
	Problem Based Learning
	Imperative Programming
	Supplementary Insights
	Utilisation and justification of the chosen methods

	State-of-the-art
	Introduction to the main topic
	Manual screening of job applications
	Applicant tracking systems - ATS
	Software Examples
	Competitors on the market

	Limitations by automation of Short-Listing

	Analysis
	Stakeholder Analysis
	Salience Model Diagram
	Stakeholders
	Within The Project
	Within The University
	Outside The University

	Interviews
	Questions and answers
	Sub Conclusion of the Interviews

	Quantitative Survey
	Sub Conclusion of the Quantitative survey

	Interviews in comparison with the Quantitative survey
	Persona
	Requirement specifications
	Must Have
	Should Have
	Could Have
	Won't Have

	The product: A program that solves a problem
	Design
	Diagrams

	Phases during product creation
	Achievability phase
	Essentials phase
	Post-interview phase

	How does the software work?
	Implementation
	Pre-processing units
	Organising data
	Main function
	makeFileKeywords
	makeFileWithLineBreaks
	contactFinder
	readFileKeywords
	contactRating
	outputInFile
	validation

	Discussion of the product
	The final product compared to requirements
	MacOS and Windows builds
	File processing
	Tests

	Future work on the product
	Other considerations

	Conclusion
	Figures
	References

